File size: 27,323 Bytes
57728d7 e84a5b4 f56b01d e84a5b4 d924e11 57728d7 d924e11 e84a5b4 d924e11 8b461d6 14e747f 8b461d6 e84a5b4 57728d7 1bc1e75 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 027d32e e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 1bc1e75 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 1bc1e75 e84a5b4 f56b01d 1bc1e75 e84a5b4 027d32e f56b01d e84a5b4 f56b01d 027d32e e84a5b4 f56b01d e84a5b4 1bc1e75 f56b01d e84a5b4 f56b01d 027d32e e84a5b4 f56b01d 1bc1e75 e84a5b4 f56b01d 1bc1e75 e84a5b4 027d32e e84a5b4 027d32e e84a5b4 027d32e e84a5b4 027d32e 1bc1e75 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 1bc1e75 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 8b461d6 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 8b461d6 e84a5b4 f56b01d 8b461d6 e84a5b4 8b461d6 e84a5b4 8b461d6 e84a5b4 8b461d6 f56b01d e84a5b4 8b461d6 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 1bc1e75 e84a5b4 1bc1e75 e84a5b4 1bc1e75 e84a5b4 1bc1e75 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 1bc1e75 e84a5b4 1bc1e75 e84a5b4 1bc1e75 e84a5b4 f56b01d e84a5b4 f56b01d e84a5b4 8b461d6 e84a5b4 8b461d6 e84a5b4 f56b01d 8b461d6 e84a5b4 8b461d6 e84a5b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import os
import io
import tempfile
import shutil # Kept for potential future use, but not actively used for now.
import cv2
import numpy as np
import pandas as pd
import torch
import onnxruntime as rt
from PIL import Image
import gradio as gr
from transformers import pipeline
from huggingface_hub import hf_hub_download
# Assuming aesthetic_predictor_v2_5.py is in the same directory or Python path.
# If it's not available, the AestheticPredictorV25 model will fail to load.
# For this example, a mock will be used if the real import fails.
try:
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
except ImportError:
print("Warning: aesthetic_predictor_v2_5.py not found. Using a mock for AestheticPredictorV25.")
def convert_v2_5_from_siglip(low_cpu_mem_usage=True, trust_remote_code=True):
# This is a mock.
mock_model_output = torch.randn(1, 1) # Represents logits for a single image
class MockModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.dummy_param = torch.nn.Parameter(torch.empty(0)) # To have a device property
def forward(self, pixel_values):
# Return something that has .logits
# Batch size from pixel_values
batch_size = pixel_values.size(0)
# Create a namedtuple or simple class to mimic HuggingFace output object with .logits
class Output:
pass
output = Output()
output.logits = torch.randn(batch_size, 1).to(self.dummy_param.device)
return output
def to(self, device_or_dtype): # Simplified .to()
if isinstance(device_or_dtype, torch.dtype):
# In a real scenario, handle dtype conversion
pass
elif isinstance(device_or_dtype, str) or isinstance(device_or_dtype, torch.device):
self.dummy_param = torch.nn.Parameter(torch.empty(0, device=device_or_dtype)) # Move dummy param to device
return self
def cuda(self): # Mock .cuda()
return self.to(torch.device('cuda'))
mock_model_instance = MockModel()
# Mock preprocessor that returns a dict with "pixel_values"
mock_preprocessor = lambda images, return_tensors: {"pixel_values": torch.randn(len(images) if isinstance(images, list) else 1, 3, 224, 224)}
return mock_model_instance, mock_preprocessor
# --- Configuration ---
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DTYPE_WAIFU = torch.float32 # Specific dtype for WaifuScorer's MLP
CACHE_DIR = None # Set to a path string to use a specific Hugging Face cache directory, e.g., "./hf_cache"
# --- Model Definitions ---
class MLP(torch.nn.Module):
"""Custom MLP for WaifuScorer."""
def __init__(self, input_size: int, batch_norm: bool = True):
super().__init__()
self.input_size = input_size
self.layers = torch.nn.Sequential(
torch.nn.Linear(self.input_size, 2048), torch.nn.ReLU(),
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.3),
torch.nn.Linear(2048, 512), torch.nn.ReLU(),
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.3),
torch.nn.Linear(512, 256), torch.nn.ReLU(),
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.2),
torch.nn.Linear(256, 128), torch.nn.ReLU(),
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(), torch.nn.Dropout(0.1),
torch.nn.Linear(128, 32), torch.nn.ReLU(),
torch.nn.Linear(32, 1)
)
def forward(self, x: torch.Tensor) -> torch.Tensor: return self.layers(x)
class BaseImageScorer:
"""Abstract base class for image scorers."""
def __init__(self, model_key: str, model_display_name: str, device: str = DEVICE, verbose: bool = False):
self.model_key = model_key
self.model_display_name = model_display_name
self.device = device
self.verbose = verbose
self.model = None
self.preprocessor = None
self._load_model()
def _load_model(self): raise NotImplementedError
def predict(self, images: list[Image.Image]) -> list[float | None]: raise NotImplementedError
def __call__(self, images: list[Image.Image]) -> list[float | None]:
if not self.model:
if self.verbose: print(f"{self.model_display_name} model not loaded.")
return [None] * len(images)
rgb_images = [img.convert("RGB") if img.mode != "RGB" else img for img in images]
return self.predict(rgb_images)
class WaifuScorerModel(BaseImageScorer):
def _load_model(self):
try:
import clip
model_hf_path = "Eugeoter/waifu-scorer-v3/model.pth" # Default path
repo_id, filename = os.path.split(model_hf_path)
actual_model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=CACHE_DIR)
if self.verbose: print(f"Loading WaifuScorer MLP from: {actual_model_path}")
self.mlp = MLP(input_size=768) # ViT-L/14 embedding size
if actual_model_path.endswith(".safetensors"):
from safetensors.torch import load_file
state_dict = load_file(actual_model_path, device=self.device)
else:
state_dict = torch.load(actual_model_path, map_location=self.device)
self.mlp.load_state_dict(state_dict)
self.mlp.to(self.device).eval()
if self.verbose: print("Loading CLIP model ViT-L/14 for WaifuScorer.")
self.model, self.preprocessor = clip.load("ViT-L/14", device=self.device) # self.model is CLIP model
self.model.eval()
except ImportError:
if self.verbose: print("CLIP library not found. WaifuScorer will not be available.")
except Exception as e:
if self.verbose: print(f"Error loading WaifuScorer ({self.model_display_name}): {e}")
@torch.no_grad()
def predict(self, images: list[Image.Image]) -> list[float | None]:
if not self.model or not self.mlp: return [None] * len(images)
original_n = len(images)
processed_images = list(images)
if original_n == 1: processed_images.append(images[0]) # Duplicate for single image batch
try:
image_tensors = torch.cat([self.preprocessor(img).unsqueeze(0) for img in processed_images]).to(self.device)
image_features = self.model.encode_image(image_tensors)
norm = image_features.norm(p=2, dim=-1, keepdim=True)
norm[norm == 0] = 1e-6 # Avoid division by zero, use small epsilon
im_emb = (image_features / norm).to(device=self.device, dtype=DTYPE_WAIFU)
predictions = self.mlp(im_emb)
scores = predictions.clamp(0, 10).cpu().numpy().flatten().tolist()
return scores[:original_n]
except Exception as e:
if self.verbose: print(f"Error during {self.model_display_name} prediction: {e}")
return [None] * original_n
class AestheticPredictorV25(BaseImageScorer):
def _load_model(self):
try:
if self.verbose: print(f"Loading {self.model_display_name}...")
self.model, self.preprocessor = convert_v2_5_from_siglip(low_cpu_mem_usage=True, trust_remote_code=True)
# Model's .to() method should handle dtype (e.g. bfloat16) and device.
self.model = self.model.to(self.device)
if self.device == 'cuda' and torch.cuda.is_available() and hasattr(self.model, 'to'): # some models might need explicit dtype
self.model = self.model.to(torch.bfloat16)
self.model.eval()
except Exception as e:
if self.verbose: print(f"Error loading {self.model_display_name}: {e}")
@torch.no_grad()
def predict(self, images: list[Image.Image]) -> list[float | None]:
if not self.model or not self.preprocessor: return [None] * len(images)
try:
inputs = self.preprocessor(images=images, return_tensors="pt")
pixel_values = inputs["pixel_values"].to(self.model.dummy_param.device if hasattr(self.model, 'dummy_param') else self.device) # Use model's device
if self.device == 'cuda' and torch.cuda.is_available() and pixel_values.dtype != torch.bfloat16 : # Match dtype if model changed it
pixel_values = pixel_values.to(torch.bfloat16)
output = self.model(pixel_values)
scores_tensor = output.logits if hasattr(output, 'logits') else output
scores = scores_tensor.squeeze().float().cpu().numpy()
scores_list = [float(np.round(np.clip(s, 0.0, 10.0), 4)) for s in np.atleast_1d(scores)]
return scores_list
except Exception as e:
if self.verbose: print(f"Error during {self.model_display_name} prediction: {e}")
return [None] * len(images)
class AnimeAestheticONNX(BaseImageScorer):
def _load_model(self):
try:
if self.verbose: print(f"Loading {self.model_display_name} (ONNX)...")
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx", cache_dir=CACHE_DIR)
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if self.device == 'cuda' else ['CPUExecutionProvider']
valid_providers = [p for p in providers if p in rt.get_available_providers()] or ['CPUExecutionProvider']
self.model = rt.InferenceSession(model_path, providers=valid_providers)
if self.verbose: print(f"{self.model_display_name} loaded with providers: {self.model.get_providers()}")
except Exception as e:
if self.verbose: print(f"Error loading {self.model_display_name}: {e}")
def _preprocess_image(self, img: Image.Image) -> np.ndarray:
img_np = np.array(img).astype(np.float32) / 255.0
s = 768
h, w = img_np.shape[:2]
r = min(s/h, s/w)
new_h, new_w = int(h*r), int(w*r)
resized = cv2.resize(img_np, (new_w, new_h), interpolation=cv2.INTER_AREA if r < 1 else cv2.INTER_LANCZOS4)
canvas = np.zeros((s, s, 3), dtype=np.float32) # Fill with black
pad_h, pad_w = (s - new_h) // 2, (s - new_w) // 2
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
return np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
def predict(self, images: list[Image.Image]) -> list[float | None]:
if not self.model: return [None] * len(images)
scores = []
for img in images:
try:
input_tensor = self._preprocess_image(img)
pred = self.model.run(None, {"img": input_tensor})[0].item()
scores.append(float(np.clip(pred * 10.0, 0.0, 10.0)))
except Exception as e:
if self.verbose: print(f"Error predicting with {self.model_display_name} for one image: {e}")
scores.append(None)
return scores
class AestheticShadowPipeline(BaseImageScorer):
def _load_model(self):
try:
if self.verbose: print(f"Loading {self.model_display_name} pipeline...")
pipeline_device = 0 if self.device == 'cuda' else -1
self.model = pipeline("image-classification", model="NeoChen1024/aesthetic-shadow-v2-backup", device=pipeline_device)
except Exception as e:
if self.verbose: print(f"Error loading {self.model_display_name}: {e}")
def predict(self, images: list[Image.Image]) -> list[float | None]:
if not self.model: return [None] * len(images)
scores = []
try:
pipeline_results = self.model(images, top_k=None) # Assuming pipeline handles batching
# Ensure consistent output structure from pipeline (List[List[Dict]] vs List[Dict])
if images and pipeline_results and not isinstance(pipeline_results[0], list):
pipeline_results = [pipeline_results]
for res_set in pipeline_results:
try:
hq_score_dict = next(p for p in res_set if p['label'] == 'hq')
scores.append(float(np.clip(hq_score_dict['score'] * 10.0, 0.0, 10.0)))
except (StopIteration, TypeError, KeyError): scores.append(None)
except Exception as e:
if self.verbose: print(f"Error during {self.model_display_name} prediction: {e}")
return [None] * len(images) # All None if batch fails
return scores
# --- Model Management ---
MODEL_REGISTRY = {
"aesthetic_shadow": {"class": AestheticShadowPipeline, "name": "Aesthetic Shadow"},
"waifu_scorer": {"class": WaifuScorerModel, "name": "Waifu Scorer"},
"aesthetic_predictor_v2_5": {"class": AestheticPredictorV25, "name": "Aesthetic V2.5"},
"anime_aesthetic": {"class": AnimeAestheticONNX, "name": "Anime Score"},
}
LOADED_MODELS = {} # Populated at startup
def initialize_models(verbose_loading=False):
print(f"Using device: {DEVICE}")
print("Initializing models...")
for key, config in MODEL_REGISTRY.items():
LOADED_MODELS[key] = config["class"](key, config['name'], device=DEVICE, verbose=verbose_loading)
print("Model initialization complete.")
# --- Core Logic ---
@torch.no_grad()
def auto_tune_batch_size(images: list[Image.Image], selected_model_keys: list[str],
initial_bs: int = 1, max_bs_limit: int = 64, verbose: bool = False) -> int:
if not images or not selected_model_keys: return initial_bs
if verbose: print("Auto-tuning batch size...")
test_image = images[0]
active_models = [LOADED_MODELS[key] for key in selected_model_keys if key in LOADED_MODELS and LOADED_MODELS[key].model]
if not active_models: return initial_bs
bs = initial_bs
optimal_bs = initial_bs
while bs <= len(images) and bs <= max_bs_limit:
try:
batch_test_images = [test_image] * bs
for model in active_models:
if verbose: print(f" Testing {model.model_display_name} with batch size {bs}")
model.predict(batch_test_images)
if DEVICE == 'cuda': torch.cuda.empty_cache()
optimal_bs = bs
if bs == max_bs_limit: break
bs = min(bs * 2, max_bs_limit) # Try next power of 2 or max_bs_limit
except Exception as e: # Typically OOM or other runtime errors
if verbose: print(f" Failed at batch size {bs} ({type(e).__name__}). Optimal so far: {optimal_bs}. Error: {str(e)[:100]}")
break
if verbose: print(f"Auto-tuned batch size: {optimal_bs}")
return max(1, optimal_bs)
async def evaluate_images_core(
pil_images: list[Image.Image], file_names: list[str],
selected_model_keys: list[str], batch_size: int,
progress_tracker: gr.Progress
) -> tuple[pd.DataFrame, list[str]]:
logs = []
num_images = len(pil_images)
if num_images == 0: return pd.DataFrame(), ["No images to process."]
# Initialize results_data: list of dicts, one per image
results_data = [{'File Name': fn, 'Thumbnail': img.copy().resize((150,150)), 'Final Score': np.nan}
for fn, img in zip(file_names, pil_images)]
for r_dict in results_data: # Initialize all model score columns to NaN
for cfg in MODEL_REGISTRY.values(): r_dict[cfg['name']] = np.nan
progress_tracker(0, desc="Starting evaluation...")
total_models_to_run = len(selected_model_keys)
for model_idx, model_key in enumerate(selected_model_keys):
model = LOADED_MODELS.get(model_key)
if not model or not model.model:
logs.append(f"Skipping {MODEL_REGISTRY[model_key]['name']} (not loaded).")
continue
model_name = model.model_display_name
logs.append(f"Processing with {model_name}...")
current_img_offset = 0
for batch_start_idx in range(0, num_images, batch_size):
# Progress: (current_model_idx + fraction_of_current_model_done) / total_models_to_run
model_progress_fraction = (batch_start_idx / num_images)
overall_progress = (model_idx + model_progress_fraction) / total_models_to_run
progress_tracker(overall_progress, desc=f"{model_name} (Batch {batch_start_idx//batch_size + 1})")
batch_images = pil_images[batch_start_idx : batch_start_idx + batch_size]
try:
scores = model(batch_images) # Use __call__
for i, score in enumerate(scores):
results_data[current_img_offset + i][model_name] = score if score is not None else np.nan
except Exception as e:
logs.append(f"Error with {model_name} on batch: {e}")
current_img_offset += len(batch_images)
logs.append(f"Finished with {model_name}.")
# Calculate Final Scores
for i in range(num_images):
img_scores = [results_data[i][MODEL_REGISTRY[mk]['name']] for mk in selected_model_keys
if pd.notna(results_data[i].get(MODEL_REGISTRY[mk]['name']))]
if img_scores:
results_data[i]['Final Score'] = float(np.clip(np.mean(img_scores), 0.0, 10.0))
df = pd.DataFrame(results_data)
# Define column order: Thumbnail, File Name, then model scores, then Final Score
ordered_cols = ['Thumbnail', 'File Name'] + \
[MODEL_REGISTRY[k]['name'] for k in MODEL_REGISTRY.keys() if MODEL_REGISTRY[k]['name'] in df.columns] + \
['Final Score']
df = df[[col for col in ordered_cols if col in df.columns]] # Ensure all columns exist
logs.append("Evaluation complete.")
progress_tracker(1.0, desc="Evaluation complete.")
return df, logs
def results_df_to_csv_bytes(df: pd.DataFrame, selected_model_display_names: list[str]) -> bytes | None:
if df.empty: return None
cols_for_csv = ['File Name', 'Final Score'] + \
[name for name in selected_model_display_names if name in df.columns and name not in cols_for_csv]
df_csv = df[cols_for_csv].copy()
for col in df_csv.select_dtypes(include=['float']).columns: # Format float scores
df_csv[col] = df_csv[col].apply(lambda x: f"{x:.4f}" if pd.notnull(x) else "N/A")
s_io = io.StringIO()
df_csv.to_csv(s_io, index=False)
return s_io.getvalue().encode('utf-8')
# --- Gradio Interface ---
def create_gradio_interface():
model_name_choices = [config['name'] for config in MODEL_REGISTRY.values()]
# Define column structure for DataFrame
initial_df_cols = ['Thumbnail', 'File Name'] + model_name_choices + ['Final Score']
initial_datatypes = ['image', 'str'] + ['number'] * (len(model_name_choices) + 1)
with gr.Blocks(theme=gr.themes.Glass()) as demo:
gr.Markdown("## ✨ Comprehensive Image Evaluation Tool ✨")
# For storing results DataFrame between interactions
results_state = gr.State(pd.DataFrame(columns=initial_df_cols))
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("#### Controls")
files_input = gr.Files(label="Upload Images", file_count="multiple", type="filepath")
models_checkbox_group = gr.CheckboxGroup(choices=model_name_choices, value=model_name_choices, label="Select Models")
with gr.Accordion("Batch Settings", open=False):
auto_batch_toggle = gr.Checkbox(label="Auto-detect Batch Size", value=True)
manual_batch_input = gr.Number(label="Manual Batch Size", value=4, minimum=1, step=1, interactive=False) # Interactive based on toggle
evaluate_button = gr.Button("🚀 Evaluate Images", variant="primary")
with gr.Row():
clear_button = gr.Button("🧹 Clear")
download_button = gr.Button("💾 Download CSV")
# Hidden component for file download functionality
csv_file_output = gr.File(label="Download CSV File", visible=False)
with gr.Column(scale=3, min_width=600):
gr.Markdown("#### Results")
# Using gr.Slider for progress display
progress_slider = gr.Slider(label="Progress", minimum=0, maximum=1, value=0, interactive=False)
results_dataframe = gr.DataFrame(
label="Evaluation Scores",
headers=initial_df_cols,
datatype=initial_datatypes,
interactive=True, # Enables native sorting by clicking headers
height=500,
wrap=True
)
logs_textbox = gr.Textbox(label="Process Logs", lines=5, max_lines=10, interactive=False)
# --- Callbacks ---
def map_display_names_to_keys(display_names: list[str]) -> list[str]:
return [key for key, cfg in MODEL_REGISTRY.items() if cfg['name'] in display_names]
async def run_evaluation(uploaded_files, selected_model_names, auto_batch, manual_batch,
current_results_df, progress=gr.Progress(track_tqdm=True)):
if not uploaded_files:
return {
results_state: current_results_df, logs_textbox: "No files uploaded. Please upload images first.",
progress_slider: gr.update(value=0, label="Progress")
}
yield {logs_textbox: "Loading images...", progress_slider: gr.update(value=0.01, label="Loading images...")}
pil_images, file_names = [], []
for f_obj in uploaded_files:
try:
pil_images.append(Image.open(f_obj.name).convert("RGB")) # f_obj.name is path for type="filepath"
file_names.append(os.path.basename(f_obj.name))
except Exception as e:
print(f"Error loading image {f_obj.name}: {e}") # Log to console
if not pil_images:
return {logs_textbox: "No valid images could be loaded.", progress_slider: gr.update(value=0, label="Error")}
selected_keys = map_display_names_to_keys(selected_model_names)
batch_size_to_use = manual_batch
if auto_batch:
yield {logs_textbox: "Auto-tuning batch size...", progress_slider: gr.update(value=0.1, label="Auto-tuning...")}
batch_size_to_use = auto_tune_batch_size(pil_images, selected_keys, verbose=True)
yield {manual_batch_input: gr.update(value=batch_size_to_use)} # Update UI with detected size
yield {logs_textbox: f"Starting evaluation with batch size {batch_size_to_use}...",
progress_slider: gr.update(value=0.15, label=f"Evaluating (Batch: {batch_size_to_use})...")}
df_new_results, log_messages = await evaluate_images_core(
pil_images, file_names, selected_keys, batch_size_to_use, progress
)
# Sort by 'Final Score' descending by default before display
if not df_new_results.empty and 'Final Score' in df_new_results.columns:
df_new_results = df_new_results.sort_values(by='Final Score', ascending=False, na_position='last')
return {
results_state: df_new_results, results_dataframe: df_new_results,
logs_textbox: "\n".join(log_messages),
progress_slider: gr.update(value=1.0, label="Evaluation Complete")
}
def clear_all_outputs():
empty_df = pd.DataFrame(columns=initial_df_cols)
return {
results_state: empty_df, results_dataframe: empty_df,
files_input: None, logs_textbox: "Outputs cleared.",
progress_slider: gr.update(value=0, label="Progress")
}
def download_csv_file(current_df, selected_names):
if current_df.empty:
gr.Warning("No results available to download.")
return None
csv_data = results_df_to_csv_bytes(current_df, selected_names)
if csv_data:
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='wb') as tmp_f:
tmp_f.write(csv_data)
gr.Info("CSV file prepared for download.")
return tmp_f.name
gr.Error("Failed to generate CSV.")
return None
def update_final_scores_on_model_select(selected_model_names, current_df):
if current_df.empty: return current_df
df_updated = current_df.copy()
selected_keys = map_display_names_to_keys(selected_model_names)
for i, row in df_updated.iterrows():
img_scores = [row[MODEL_REGISTRY[mk]['name']] for mk in selected_keys
if pd.notna(row.get(MODEL_REGISTRY[mk]['name']))]
if img_scores:
df_updated.loc[i, 'Final Score'] = float(np.clip(np.mean(img_scores), 0.0, 10.0))
else:
df_updated.loc[i, 'Final Score'] = np.nan
if 'Final Score' in df_updated.columns: # Re-sort
df_updated = df_updated.sort_values(by='Final Score', ascending=False, na_position='last')
return {results_state: df_updated, results_dataframe: df_updated}
auto_batch_toggle.change(lambda x: gr.update(interactive=not x), inputs=auto_batch_toggle, outputs=manual_batch_input)
evaluate_button.click(
fn=run_evaluation,
inputs=[files_input, models_checkbox_group, auto_batch_toggle, manual_batch_input, results_state],
outputs=[results_state, results_dataframe, logs_textbox, manual_batch_input, progress_slider]
)
clear_button.click(fn=clear_all_outputs, outputs=[results_state, results_dataframe, files_input, logs_textbox, progress_slider])
download_button.click(fn=download_csv_file, inputs=[results_state, models_checkbox_group], outputs=csv_file_output)
models_checkbox_group.change(
fn=update_final_scores_on_model_select,
inputs=[models_checkbox_group, results_state],
outputs=[results_state, results_dataframe]
)
# Initial load state for the DataFrame UI component
demo.load(lambda: pd.DataFrame(columns=initial_df_cols), outputs=[results_dataframe])
return demo
if __name__ == "__main__":
initialize_models(verbose_loading=True) # Load models once at startup
gradio_app = create_gradio_interface()
gradio_app.queue().launch(debug=False) # Enable queue for async ops, debug=True for more logs |