Portrait-Animation / sonic.py
openfree's picture
Update sonic.py
c260fe0 verified
raw
history blame
11.2 kB
"""
sonic.py – 2025-05 hot-fix
주요 수정
• config.pretrained_model_name_or_path 가 실제 폴더인지 확인
• 없다면 huggingface_hub.snapshot_download 로 자동 다운로드
• 경로가 준비된 뒤 모델 로드 진행
"""
import os, math, torch, cv2
from PIL import Image
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from huggingface_hub import snapshot_download, hf_hub_download
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
# ------------------------------
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
HF_STABLE_REPO = "stabilityai/stable-video-diffusion-img2vid-xt"
LOCAL_STABLE_DIR = os.path.join(BASE_DIR, "checkpoints", "stable-video-diffusion-img2vid-xt")
# ------------------------------------------------------------------
# single image + speech → video tensor
# ------------------------------------------------------------------
def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, img_enc,
width, height, batch):
# --- batch 차원 맞추기 ------------------------------------------
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).float().to(pipe.device)
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
img_emb = img_enc(clip_img).image_embeds # (1,1024)
audio_feat = batch['audio_feature'] # (1,80,T)
audio_len = int(batch['audio_len'])
step = max(1, int(cfg.step)) # 안전 보정
window = 16_000 # 1-초 chunk
prompt_list, last_list = [], []
for i in range(0, audio_feat.shape[-1], window):
chunk = audio_feat[:, :, i:i+window]
hs = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
prompt_list.append(torch.stack(hs, 2)) # (1,80,L,384)
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
last_list.append(last) # (1,80,1,384)
if not prompt_list:
raise ValueError("❌ No speech recognised in audio.")
audio_prompts = torch.cat(prompt_list, 1) # (1,80,*L,384)
last_prompts = torch.cat(last_list, 1) # (1,80,*1,384)
# pad 규칙 (모델 원 논문과 동일)
audio_prompts = torch.cat([ torch.zeros_like(audio_prompts[:,:4]),
audio_prompts,
torch.zeros_like(audio_prompts[:,:6]) ], 1)
last_prompts = torch.cat([ torch.zeros_like(last_prompts[:,:24]),
last_prompts,
torch.zeros_like(last_prompts[:,:26]) ], 1)
# --------------------------------------------------------------
total_tok = audio_prompts.shape[1]
n_chunks = max(1, math.ceil(total_tok / (2*step)))
ref_L, aud_L, uncond_L, buckets = [], [], [], []
for i in tqdm(range(n_chunks), ncols=0):
st = i * 2 * step
# ① 조건 오디오 토큰(pad → 10×5×384)
cond = audio_prompts[:, st:st+10] # (1,80,10,384) → (1,10,8,384)?
cond = cond[:, :10] # f = 10
cond = cond.permute(0,2,1,3) # (1,10,80,384)
cond = cond.reshape(1, 10, 10, 5, 384) # ★ w=10, b=5 (zero-pad auto)
# ② bucket 추정용 토큰
buck = last_prompts[:, st:st+50] # (1,80,50,384)
if buck.shape[1] < 50:
pad = torch.zeros(1, 50-buck.shape[1], *buck.shape[2:], device=buck.device)
buck = torch.cat([buck, pad], 1)
buck = buck[:, :50].permute(0,2,1,3).reshape(1, 50, 10, 5, 384)
motion = audio2bucket(buck, img_emb) * 16 + 16
ref_L.append(ref_img[0])
aud_L.append(audio_pe(cond).squeeze(0)) # (10,1024)
uncond_L.append(audio_pe(torch.zeros_like(cond)).squeeze(0))
buckets.append(motion[0])
# -------------- diffusion -------------------------------------------------
vid = pipe(
ref_img, clip_img, face_mask,
aud_L, uncond_L, buckets,
height=height, width=width,
num_frames=len(aud_L),
decode_chunk_size=cfg.decode_chunk_size,
motion_bucket_scale=cfg.motion_bucket_scale,
fps=cfg.fps,
noise_aug_strength=cfg.noise_aug_strength,
min_guidance_scale1=cfg.min_appearance_guidance_scale,
max_guidance_scale1=cfg.max_appearance_guidance_scale,
min_guidance_scale2=cfg.audio_guidance_scale,
max_guidance_scale2=cfg.audio_guidance_scale,
overlap=cfg.overlap,
shift_offset=cfg.shift_offset,
frames_per_batch=cfg.n_sample_frames,
num_inference_steps=cfg.num_inference_steps,
i2i_noise_strength=cfg.i2i_noise_strength,
).frames
return (vid*0.5+0.5).clamp(0,1).to(pipe.device).unsqueeze(0).cpu()
# ------------------------------------------------------------------
# Sonic wrapper
# ------------------------------------------------------------------
class Sonic:
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
cfg = self.config
cfg.use_interframe = enable_interpolate_frame
self.device = f"cuda:{device_id}" if torch.cuda.is_available() and device_id >= 0 else "cpu"
# ----------- ✨ [NEW] pretrained 모델 폴더 확보 ----------------------
if not os.path.isdir(LOCAL_STABLE_DIR) or not os.path.isfile(os.path.join(LOCAL_STABLE_DIR, "vae", "config.json")):
print("[INFO] 1st-run – downloading base model (~2 GB)…")
snapshot_download(repo_id=HF_STABLE_REPO,
local_dir=LOCAL_STABLE_DIR,
resume_download=True,
local_dir_use_symlinks=False)
cfg.pretrained_model_name_or_path = LOCAL_STABLE_DIR
# ------------------------------------------------------------------
self._load_models(cfg)
print("Sonic init done")
# model-loader (unchanged, but with tiny clean-ups) ------------------------
def _load_models(self, cfg):
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
sched = EulerDiscreteScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
img_enc = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
self.audio2token = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
self.audio2bucket = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
unet.load_state_dict (torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
self.audio2token.load_state_dict (torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
self.audio2bucket.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
self.whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
self.whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
if cfg.use_interframe:
self.rife = RIFEModel(device=self.device); self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
for m in (img_enc, vae, unet): m.to(dtype)
self.pipe = SonicPipeline(unet=unet, image_encoder=img_enc, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
self.image_encoder = img_enc
# ------------------------------------------------------------------
def preprocess(self, img_path, expand_ratio=1.0):
img = cv2.imread(img_path)
_, _, boxes = self.face_det(img, maxface=True)
if boxes:
x,y,w,h = boxes[0]; return {"face_num":1,"crop_bbox":process_bbox((x,y,x+w,y+h),expand_ratio,*img.shape[:2])}
return {"face_num":0,"crop_bbox":None}
# ------------------------------------------------------------------
@torch.no_grad()
def process(self, img_path, wav_path, out_path,
min_resolution=512, inference_steps=25,
dynamic_scale=1.0, keep_resolution=False, seed=None):
cfg = self.config
if seed is not None: cfg.seed = seed
cfg.num_inference_steps = inference_steps
cfg.motion_bucket_scale = dynamic_scale
seed_everything(cfg.seed)
sample = image_audio_to_tensor(
self.face_det, self.feature_extractor,
img_path, wav_path, limit=-1,
image_size=min_resolution, area=cfg.area,
)
if sample is None: return -1
h,w = sample['ref_img'].shape[-2:]
resolution = (f"{Image.open(img_path).width//2*2}x{Image.open(img_path).height//2*2}"
if keep_resolution else f"{w}x{h}")
video = test(self.pipe, cfg, self.whisper, self.audio2token,
self.audio2bucket, self.image_encoder, w, h, sample)
if cfg.use_interframe: # RIFE interpolation
out = video.to(self.device); frames=[]
for i in tqdm(range(out.shape[2]-1), ncols=0):
mid = self.rife.inference(out[:,:,i], out[:,:,i+1]).clamp(0,1)
frames += [out[:,:,i], mid]
frames.append(out[:,:,-1]); video = torch.stack(frames,2).cpu()
tmp = out_path.replace(".mp4","_noaudio.mp4")
save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps*(2 if cfg.use_interframe else 1))
os.system(f"ffmpeg -i '{tmp}' -i '{wav_path}' -s {resolution} "
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error")
os.remove(tmp); return 0