Spaces:
Running
on
Zero
Running
on
Zero
import os, math | |
import torch | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from tqdm import tqdm | |
import cv2 | |
from diffusers import AutoencoderKLTemporalDecoder | |
from diffusers.schedulers import EulerDiscreteScheduler | |
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor | |
from src.utils.util import save_videos_grid, seed_everything | |
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor | |
from src.models.base.unet_spatio_temporal_condition import ( | |
UNetSpatioTemporalConditionModel, add_ip_adapters, | |
) | |
from src.pipelines.pipeline_sonic import SonicPipeline | |
from src.models.audio_adapter.audio_proj import AudioProjModel | |
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel | |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel | |
from src.dataset.face_align.align import AlignImage | |
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | |
# ------------------------------------------------------------------ | |
# single image + speech → video-tensor generator | |
# ------------------------------------------------------------------ | |
def test( | |
pipe, config, wav_enc, audio_pe, audio2bucket, image_encoder, | |
width, height, batch, | |
): | |
# ---------------- batch 차원 맞추기 ----------------------------- | |
for k, v in batch.items(): | |
if isinstance(v, torch.Tensor): | |
batch[k] = v.unsqueeze(0).to(pipe.device).float() | |
ref_img = batch["ref_img"] # (1,C,H,W) | |
clip_img = batch["clip_images"] | |
face_mask = batch["face_mask"] | |
image_embeds = image_encoder(clip_img).image_embeds # (1,1024) | |
audio_feature = batch["audio_feature"] # (1,80,T) | |
audio_len = int(batch["audio_len"]) # python int | |
step = int(config.step) | |
# ---------- window 단위 Whisper 인코딩 -------------------------- | |
window = 16_000 # 1 초 | |
audio_prompts, last_prompts = [], [] | |
for i in range(0, audio_feature.shape[-1], window): | |
chunk = audio_feature[:, :, i : i + window] | |
layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states | |
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2) | |
audio_prompts.append(torch.stack(layers, dim=2)) # (1,?,L,384) | |
last_prompts.append(last) # (1,?,1,384) | |
if not audio_prompts: | |
raise ValueError("[ERROR] No speech recognised in the provided audio.") | |
audio_prompts = torch.cat(audio_prompts, dim=1) | |
last_prompts = torch.cat(last_prompts, dim=1) | |
# ---------- 모델 입력 규칙에 맞춰 padding ----------------------- | |
audio_prompts = torch.cat( | |
[torch.zeros_like(audio_prompts[:, :4]), # head pad | |
audio_prompts, | |
torch.zeros_like(audio_prompts[:, :6])], dim=1) | |
last_prompts = torch.cat( | |
[torch.zeros_like(last_prompts[:, :24]), | |
last_prompts, | |
torch.zeros_like(last_prompts[:, :26])], dim=1) | |
# ---------- 음성 길이에 따라 chunk 횟수 산정 --------------------- | |
total_tokens = audio_prompts.shape[1] | |
num_chunks = max(1, math.ceil(total_tokens / (2 * step))) | |
ref_list, audio_list, uncond_list, motion_buckets = [], [], [], [] | |
for i in tqdm(range(num_chunks)): | |
start = i * 2 * step | |
# ---------------- cond_clip (w=10,L=5) -------------------- | |
clip_raw = audio_prompts[:, start : start + 10] # (1,≤10,L,384) | |
# w-pad | |
if clip_raw.shape[1] < 10: | |
pad_w = torch.zeros_like(clip_raw[:, :10 - clip_raw.shape[1]]) | |
clip_raw = torch.cat([clip_raw, pad_w], dim=1) | |
# ★ L-pad (Whisper-tiny → L=2 → 5로 확장) | |
if clip_raw.shape[2] < 5: | |
pad_L = clip_raw[:, :, -1:].repeat(1, 1, 5 - clip_raw.shape[2], 1) | |
clip_raw = torch.cat([clip_raw, pad_L], dim=2) | |
clip_raw = clip_raw[:, :, :5] # (1,10,5,384) | |
cond_clip = clip_raw.unsqueeze(1) # (1,1,10,5,384) | |
# ---------------- bucket_clip (w=50,L=1) ------------------ | |
bucket_raw = last_prompts[:, start : start + 50] # (1,≤50,1,384) | |
if bucket_raw.shape[1] < 50: | |
pad_w = torch.zeros_like(bucket_raw[:, :50 - bucket_raw.shape[1]]) | |
bucket_raw = torch.cat([bucket_raw, pad_w], dim=1) | |
bucket_clip = bucket_raw.unsqueeze(1) # (1,1,50,1,384) | |
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16 | |
ref_list.append(ref_img[0]) | |
audio_list.append(audio_pe(cond_clip).squeeze(0)[0]) # (10,1024) | |
uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0)[0]) | |
motion_buckets.append(motion[0]) | |
# ---------- Stable-Video-Diffusion 호출 ------------------------- | |
video = pipe( | |
ref_img, clip_img, face_mask, | |
audio_list, uncond_list, motion_buckets, | |
height=height, width=width, | |
num_frames=len(audio_list), | |
decode_chunk_size=config.decode_chunk_size, | |
motion_bucket_scale=config.motion_bucket_scale, | |
fps=config.fps, | |
noise_aug_strength=config.noise_aug_strength, | |
min_guidance_scale1=config.min_appearance_guidance_scale, | |
max_guidance_scale1=config.max_appearance_guidance_scale, | |
min_guidance_scale2=config.audio_guidance_scale, | |
max_guidance_scale2=config.audio_guidance_scale, | |
overlap=config.overlap, | |
shift_offset=config.shift_offset, | |
frames_per_batch=config.n_sample_frames, | |
num_inference_steps=config.num_inference_steps, | |
i2i_noise_strength=config.i2i_noise_strength, | |
).frames | |
video = (video * 0.5 + 0.5).clamp(0, 1) | |
return video.to(pipe.device).unsqueeze(0).cpu() | |
# ------------------------------------------------------------------ | |
# Sonic class | |
# ------------------------------------------------------------------ | |
class Sonic: | |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml") | |
config = OmegaConf.load(config_file) | |
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True): | |
cfg = self.config | |
cfg.use_interframe = enable_interpolate_frame | |
self.device = f"cuda:{device_id}" if device_id >= 0 and torch.cuda.is_available() else "cpu" | |
cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path) | |
self._load_models(cfg) | |
print("Sonic init done") | |
# -------------------------------------------------------------- | |
def _load_models(self, cfg): | |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype] | |
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16") | |
sched = EulerDiscreteScheduler .from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler") | |
imgenc= CLIPVisionModelWithProjection .from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16") | |
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16") | |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale]) | |
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device) | |
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device) | |
unet .load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu")) | |
a2t .load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu")) | |
a2b .load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu")) | |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval() | |
whisper.requires_grad_(False) | |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")) | |
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt")) | |
if cfg.use_interframe: | |
self.rife = RIFEModel(device=self.device) | |
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/")) | |
for m in (imgenc, vae, unet): | |
m.to(dtype) | |
self.pipe = SonicPipeline(unet=unet, image_encoder=imgenc, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype) | |
self.image_encoder = imgenc | |
self.audio2token = a2t | |
self.audio2bucket = a2b | |
self.whisper = whisper | |
# -------------------------------------------------------------- | |
def preprocess(self, image_path: str, expand_ratio: float = 1.0): | |
img = cv2.imread(image_path) | |
h, w = img.shape[:2] | |
_, _, bboxes = self.face_det(img, maxface=True) | |
if bboxes: | |
x1, y1, ww, hh = bboxes[0] | |
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)} | |
return {"face_num": 0, "crop_bbox": None} | |
# -------------------------------------------------------------- | |
def process( | |
self, | |
image_path: str, | |
audio_path: str, | |
output_path: str, | |
min_resolution: int = 512, | |
inference_steps: int = 25, | |
dynamic_scale: float = 1.0, | |
keep_resolution: bool = False, | |
seed: int | None = None, | |
): | |
cfg = self.config | |
if seed is not None: | |
cfg.seed = seed | |
cfg.num_inference_steps = inference_steps | |
cfg.motion_bucket_scale = dynamic_scale | |
seed_everything(cfg.seed) | |
# 이미지·오디오 → tensor | |
test_data = image_audio_to_tensor( | |
self.face_det, | |
self.feature_extractor, | |
image_path, | |
audio_path, | |
limit=-1, | |
image_size=min_resolution, | |
area=cfg.area, | |
) | |
if test_data is None: | |
return -1 | |
h, w = test_data["ref_img"].shape[-2:] | |
resolution = ( | |
f"{(Image.open(image_path).width // 2) * 2}x{(Image.open(image_path).height // 2) * 2}" | |
if keep_resolution | |
else f"{w}x{h}" | |
) | |
# 비디오 프레임 생성 | |
video = test( | |
self.pipe, cfg, self.whisper, self.audio2token, | |
self.audio2bucket, self.image_encoder, | |
width=w, height=h, batch=test_data, | |
) | |
# 중간 프레임 보간 | |
if cfg.use_interframe: | |
out = video.to(self.device) | |
frames = [] | |
for i in tqdm(range(out.shape[2] - 1), ncols=0): | |
mid = self.rife.inference(out[:, :, i], out[:, :, i + 1]).clamp(0, 1).detach() | |
frames.extend([out[:, :, i], mid]) | |
frames.append(out[:, :, -1]) | |
video = torch.stack(frames, 2).cpu() | |
# 저장 | |
tmp_mp4 = output_path.replace(".mp4", "_noaudio.mp4") | |
save_videos_grid(video, tmp_mp4, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1)) | |
os.system( | |
f"ffmpeg -i '{tmp_mp4}' -i '{audio_path}' -s {resolution} " | |
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{output_path}' -y -loglevel error" | |
) | |
os.remove(tmp_mp4) | |
return 0 | |