openfree's picture
Update app.py
729c163 verified
raw
history blame
6.98 kB
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch
# Initialize the model
cmd = (
'python3 -m pip install "huggingface_hub[cli]"; '
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)
pipe = Sonic()
def get_md5(content):
md5hash = hashlib.md5(content)
return md5hash.hexdigest()
@spaces.GPU(duration=300) # Increased duration to handle longer videos
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
expand_ratio = 0.5
min_resolution = 512
fps = 25 # 원하는 프레임 레이트 설정 (예: 25 fps)
# 오디오 파일로부터 실제 오디오 길이를 구하고, 그에 맞춰 추론 단계를 계산합니다.
audio = AudioSegment.from_file(audio_path)
duration = len(audio) / 1000.0 # 초 단위
# 오디오 길이에 따른 프레임 수 계산 (예: 5초 -> 5*25 = 125 단계)
inference_steps = int(duration * fps)
print(f"Audio duration: {duration} seconds, using inference_steps: {inference_steps}")
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
print(f"Face detection info: {face_info}")
if face_info['face_num'] > 0:
crop_image_path = img_path + '.crop.png'
pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
img_path = crop_image_path
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
# Sonic.process() 호출 시, 동적으로 계산된 inference_steps를 전달합니다.
pipe.process(
img_path,
audio_path,
res_video_path,
min_resolution=min_resolution,
inference_steps=inference_steps,
dynamic_scale=dynamic_scale
)
# 생성된 비디오 파일 경로 반환
return res_video_path
else:
return -1
tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)
def process_sonic(image, audio, dynamic_scale):
# 입력 검증
if image is None:
raise gr.Error("Please upload an image")
if audio is None:
raise gr.Error("Please upload an audio file")
img_md5 = get_md5(np.array(image))
audio_md5 = get_md5(audio[1])
print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
sampling_rate, arr = audio[:2]
if len(arr.shape) == 1:
arr = arr[:, None]
# numpy array로부터 AudioSegment 생성
audio_segment = AudioSegment(
arr.tobytes(),
frame_rate=sampling_rate,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1]
)
audio_segment = audio_segment.set_frame_rate(sampling_rate)
# 파일 경로 생성
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
# 입력 파일이 없으면 저장
if not os.path.exists(image_path):
image.save(image_path)
if not os.path.exists(audio_path):
audio_segment.export(audio_path, format="wav")
# 캐시된 결과가 있으면 반환, 없으면 새로 생성
if os.path.exists(res_video_path):
print(f"Using cached result: {res_video_path}")
return res_video_path
else:
print(f"Generating new video with dynamic scale: {dynamic_scale}")
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
# 예시 데이터를 위한 dummy 함수 (필요시 실제 예시 데이터로 수정)
def get_example():
return []
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-header {
text-align: center;
color: #2a2a2a;
margin-bottom: 2em;
}
.parameter-section {
background-color: #f5f5f5;
padding: 1em;
border-radius: 8px;
margin: 1em 0;
}
.example-section {
margin-top: 2em;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div class="main-header">
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
<p>Transform still images into dynamic videos synchronized with audio</p>
</div>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type='pil',
label="Portrait Image",
elem_id="image_input"
)
audio_input = gr.Audio(
label="Voice/Audio Input",
elem_id="audio_input",
type="numpy"
)
with gr.Column():
dynamic_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Animation Intensity",
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
)
process_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_id="process_btn"
)
with gr.Column():
video_output = gr.Video(
label="Generated Animation",
elem_id="video_output"
)
process_btn.click(
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
api_name="animate"
)
gr.Examples(
examples=get_example(),
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
cache_examples=False
)
gr.HTML("""
<div style="text-align: center; margin-top: 2em;">
<div style="margin-bottom: 1em;">
<a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
</a>
<a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
</a>
</div>
<p>🔔 Note: For optimal results, use clear portrait images and high-quality audio</p>
</div>
""")
# 공개 링크를 생성하려면 share=True 옵션 사용
demo.launch(share=True)