openfree's picture
Update app.py
c54a5d7 verified
raw
history blame
6.38 kB
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch # 필요 시 사용
# ------------------------------------------------------------------
# 모델 초기화
# ------------------------------------------------------------------
cmd = (
'python3 -m pip install "huggingface_hub[cli]"; '
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)
pipe = Sonic()
# ------------------------------------------------------------------
# 유틸
# ------------------------------------------------------------------
def get_md5(content):
"""바이트/배열에서 md5 해시 문자열 반환"""
md5hash = hashlib.md5(content)
return md5hash.hexdigest()
# ------------------------------------------------------------------
# 비디오 생성
# ------------------------------------------------------------------
@spaces.GPU(duration=300) # 최대 5분까지 GPU 세션 유지
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
expand_ratio = 0.0 # ★ 얼굴 크롭 방지
min_resolution = 512
# 오디오 길이 → 프레임 수 결정 (fps=25, 최대 60초=1500프레임)
audio = AudioSegment.from_file(audio_path)
duration = len(audio) / 1000.0 # 초
fps = 25
max_steps = fps * 60 # 1500
inference_steps = max(1, min(int(duration * fps), max_steps))
print(f"Audio duration: {duration:.2f}s → inference_steps: {inference_steps}")
# 얼굴 정보는 참고용으로만 출력
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
print(f"Face detection info: {face_info}")
if face_info["face_num"] == 0:
print("Warning: face not detected – proceeding with full image.")
# 출력 폴더 보장
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
# 비디오 생성
pipe.process(
img_path,
audio_path,
res_video_path,
min_resolution=min_resolution,
inference_steps=inference_steps,
dynamic_scale=dynamic_scale,
)
return res_video_path
# ------------------------------------------------------------------
# 캐시·경로 설정
# ------------------------------------------------------------------
tmp_path = "./tmp_path/"
res_path = "./res_path/"
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)
# ------------------------------------------------------------------
# Gradio 콜백
# ------------------------------------------------------------------
def process_sonic(image, audio, dynamic_scale):
# 입력 검증
if image is None:
raise gr.Error("Please upload an image")
if audio is None:
raise gr.Error("Please upload an audio file")
img_md5 = get_md5(np.array(image))
audio_md5 = get_md5(audio[1])
print(f"Processing (img={img_md5}, audio={audio_md5})")
# numpy 오디오 → AudioSegment
sampling_rate, arr = audio[:2]
if arr.ndim == 1:
arr = arr[:, None]
audio_segment = AudioSegment(
arr.tobytes(),
frame_rate=sampling_rate,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1],
)
# 경로
image_path = os.path.abspath(os.path.join(tmp_path, f"{img_md5}.png"))
audio_path = os.path.abspath(os.path.join(tmp_path, f"{audio_md5}.wav"))
res_video_path = os.path.abspath(
os.path.join(res_path, f"{img_md5}_{audio_md5}_{dynamic_scale}.mp4")
)
# 저장 / 캐시
if not os.path.exists(image_path):
image.save(image_path)
if not os.path.exists(audio_path):
audio_segment.export(audio_path, format="wav")
if os.path.exists(res_video_path):
print(f"Using cached result: {res_video_path}")
return res_video_path
print(f"Generating new video (dynamic_scale={dynamic_scale})")
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
def get_example():
"""예시 데이터 (필요 시 추가)"""
return []
css = """
.gradio-container { font-family: 'Arial', sans-serif; }
.main-header { text-align: center; color: #2a2a2a; margin-bottom: 2em; }
.parameter-section { background-color: #f5f5f5; padding: 1em; border-radius: 8px; margin: 1em 0; }
.example-section { margin-top: 2em; }
"""
with gr.Blocks(css=css, theme="apriel") as demo:
gr.HTML(
"""
<div class="main-header">
<h1>🎭 Longer Sonic: Advanced Portrait Animation</h1>
<p>Transform still images into dynamic videos synchronized with audio(Demo max 60sec)</p>
</div>
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Portrait Image", elem_id="image_input")
audio_input = gr.Audio(label="Voice/Audio Input", elem_id="audio_input", type="numpy")
dynamic_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Animation Intensity",
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)",
)
process_btn = gr.Button("Generate Animation", variant="primary", elem_id="process_btn")
with gr.Column():
video_output = gr.Video(label="Generated Animation", elem_id="video_output")
process_btn.click(
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
api_name="animate",
)
gr.Examples(
examples=get_example(),
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
cache_examples=False,
)
# ------------------------------------------------------------------
# Launch
# ------------------------------------------------------------------
demo.launch(share=True)