File size: 6,381 Bytes
2399e79
 
 
ff37225
2399e79
 
 
 
c54a5d7
2399e79
c54a5d7
2399e79
c54a5d7
2399e79
 
 
 
 
ff37225
2399e79
2279f85
2399e79
2279f85
c54a5d7
 
 
2399e79
c54a5d7
2399e79
 
ff37225
c54a5d7
 
 
 
2399e79
c54a5d7
ff37225
2399e79
c54a5d7
2399e79
c54a5d7
 
 
 
 
2399e79
c54a5d7
2399e79
 
c54a5d7
 
2399e79
c54a5d7
 
 
 
 
 
 
 
 
 
 
 
 
2399e79
c54a5d7
 
 
 
 
2399e79
 
 
c54a5d7
 
 
2399e79
 
ff37225
2399e79
ff37225
2399e79
c54a5d7
2399e79
 
c54a5d7
 
 
2399e79
c54a5d7
2399e79
 
 
 
 
c54a5d7
ff37225
c54a5d7
 
 
 
 
 
 
 
 
2399e79
 
 
 
c54a5d7
2399e79
 
 
 
c54a5d7
 
 
 
 
 
2399e79
c54a5d7
2399e79
 
 
c54a5d7
 
 
 
9d31513
 
c54a5d7
 
 
2399e79
c54a5d7
 
2399e79
c54a5d7
 
 
9d31513
 
c54a5d7
 
 
 
 
 
 
 
 
2399e79
c54a5d7
 
ff37225
c54a5d7
 
2399e79
 
 
 
c54a5d7
2399e79
c54a5d7
2399e79
 
 
 
 
c54a5d7
2399e79
2279f85
c54a5d7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch  # 필요 시 사용

# ------------------------------------------------------------------
# 모델 초기화
# ------------------------------------------------------------------
cmd = (
    'python3 -m pip install "huggingface_hub[cli]"; '
    'huggingface-cli download LeonJoe13/Sonic --local-dir  checkpoints; '
    'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir  checkpoints/stable-video-diffusion-img2vid-xt; '
    'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)

pipe = Sonic()

# ------------------------------------------------------------------
# 유틸
# ------------------------------------------------------------------
def get_md5(content):
    """바이트/배열에서 md5 해시 문자열 반환"""
    md5hash = hashlib.md5(content)
    return md5hash.hexdigest()

# ------------------------------------------------------------------
# 비디오 생성
# ------------------------------------------------------------------
@spaces.GPU(duration=300)  # 최대 5분까지 GPU 세션 유지
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
    expand_ratio = 0.0          # ★ 얼굴 크롭 방지
    min_resolution = 512

    # 오디오 길이 → 프레임 수 결정 (fps=25, 최대 60초=1500프레임)
    audio = AudioSegment.from_file(audio_path)
    duration = len(audio) / 1000.0  # 초
    fps = 25
    max_steps = fps * 60            # 1500
    inference_steps = max(1, min(int(duration * fps), max_steps))
    print(f"Audio duration: {duration:.2f}s → inference_steps: {inference_steps}")

    # 얼굴 정보는 참고용으로만 출력
    face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
    print(f"Face detection info: {face_info}")
    if face_info["face_num"] == 0:
        print("Warning: face not detected – proceeding with full image.")

    # 출력 폴더 보장
    os.makedirs(os.path.dirname(res_video_path), exist_ok=True)

    # 비디오 생성
    pipe.process(
        img_path,
        audio_path,
        res_video_path,
        min_resolution=min_resolution,
        inference_steps=inference_steps,
        dynamic_scale=dynamic_scale,
    )
    return res_video_path

# ------------------------------------------------------------------
# 캐시·경로 설정
# ------------------------------------------------------------------
tmp_path = "./tmp_path/"
res_path = "./res_path/"
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)

# ------------------------------------------------------------------
# Gradio 콜백
# ------------------------------------------------------------------
def process_sonic(image, audio, dynamic_scale):
    # 입력 검증
    if image is None:
        raise gr.Error("Please upload an image")
    if audio is None:
        raise gr.Error("Please upload an audio file")

    img_md5 = get_md5(np.array(image))
    audio_md5 = get_md5(audio[1])
    print(f"Processing (img={img_md5}, audio={audio_md5})")

    # numpy 오디오 → AudioSegment
    sampling_rate, arr = audio[:2]
    if arr.ndim == 1:
        arr = arr[:, None]
    audio_segment = AudioSegment(
        arr.tobytes(),
        frame_rate=sampling_rate,
        sample_width=arr.dtype.itemsize,
        channels=arr.shape[1],
    )

    # 경로
    image_path = os.path.abspath(os.path.join(tmp_path, f"{img_md5}.png"))
    audio_path = os.path.abspath(os.path.join(tmp_path, f"{audio_md5}.wav"))
    res_video_path = os.path.abspath(
        os.path.join(res_path, f"{img_md5}_{audio_md5}_{dynamic_scale}.mp4")
    )

    # 저장 / 캐시
    if not os.path.exists(image_path):
        image.save(image_path)
    if not os.path.exists(audio_path):
        audio_segment.export(audio_path, format="wav")

    if os.path.exists(res_video_path):
        print(f"Using cached result: {res_video_path}")
        return res_video_path

    print(f"Generating new video (dynamic_scale={dynamic_scale})")
    return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)

# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
def get_example():
    """예시 데이터 (필요 시 추가)"""
    return []

css = """
.gradio-container { font-family: 'Arial', sans-serif; }
.main-header { text-align: center; color: #2a2a2a; margin-bottom: 2em; }
.parameter-section { background-color: #f5f5f5; padding: 1em; border-radius: 8px; margin: 1em 0; }
.example-section { margin-top: 2em; }
"""

with gr.Blocks(css=css, theme="apriel") as demo:
    gr.HTML(
        """
        <div class="main-header">
            <h1>🎭 Longer Sonic: Advanced Portrait Animation</h1>
            <p>Transform still images into dynamic videos synchronized with audio(Demo max 60sec)</p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Portrait Image", elem_id="image_input")
            audio_input = gr.Audio(label="Voice/Audio Input", elem_id="audio_input", type="numpy")
            dynamic_scale = gr.Slider(
                minimum=0.5,
                maximum=2.0,
                value=1.0,
                step=0.1,
                label="Animation Intensity",
                info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)",
            )
            process_btn = gr.Button("Generate Animation", variant="primary", elem_id="process_btn")

        with gr.Column():
            video_output = gr.Video(label="Generated Animation", elem_id="video_output")

    process_btn.click(
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        api_name="animate",
    )

    gr.Examples(
        examples=get_example(),
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        cache_examples=False,
    )

# ------------------------------------------------------------------
# Launch
# ------------------------------------------------------------------
demo.launch(share=True)