Portrait-Animation / sonic.py
openfree's picture
Update sonic.py
6ee08fc verified
raw
history blame
12.5 kB
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def test(
pipe,
config,
wav_enc,
audio_pe,
audio2bucket,
image_encoder,
width,
height,
batch
):
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
image_embeds = image_encoder(clip_img).image_embeds
audio_feature = batch['audio_feature']
audio_len = batch['audio_len']
step = int(config.step)
# 여기서 window=3000 이었던 값을 더 크게 바꿔 최대 60초를 처리할 수 있게 함
# whisper-tiny는 기본 16kHz 샘플링이므로, 16,000단위면 대략 1초씩 끊게 됨
window = 16000 # (1초 단위로 chunk 처리)
audio_prompts = []
last_audio_prompts = []
for i in range(0, audio_feature.shape[-1], window):
audio_clip_chunk = audio_feature[:, :, i:i+window]
# Whisper encoder
audio_prompt = wav_enc.encoder(audio_clip_chunk, output_hidden_states=True).hidden_states
last_audio_prompt = wav_enc.encoder(audio_clip_chunk).last_hidden_state
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
audio_prompt = torch.stack(audio_prompt, dim=2)
audio_prompts.append(audio_prompt)
last_audio_prompts.append(last_audio_prompt)
audio_prompts = torch.cat(audio_prompts, dim=1)
# audio_len*2 부분은 모델 내부 로직에 따라 필요한 padding 처리
audio_prompts = audio_prompts[:, :audio_len*2]
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:, :4]), audio_prompts, torch.zeros_like(audio_prompts[:, :6])], 1)
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
last_audio_prompts = last_audio_prompts[:, :audio_len*2]
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:, :24]), last_audio_prompts, torch.zeros_like(last_audio_prompts[:, :26])], 1)
ref_tensor_list = []
audio_tensor_list = []
uncond_audio_tensor_list = []
motion_buckets = []
for i in tqdm(range(audio_len // step)):
audio_clip = audio_prompts[:, i*2*step : i*2*step + 10].unsqueeze(0)
audio_clip_for_bucket = last_audio_prompts[:, i*2*step : i*2*step + 50].unsqueeze(0)
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
motion_bucket = motion_bucket * 16 + 16
motion_buckets.append(motion_bucket[0])
cond_audio_clip = audio_pe(audio_clip).squeeze(0)
uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
ref_tensor_list.append(ref_img[0])
audio_tensor_list.append(cond_audio_clip[0])
uncond_audio_tensor_list.append(uncond_audio_clip[0])
video = pipe(
ref_img,
clip_img,
face_mask,
audio_tensor_list,
uncond_audio_tensor_list,
motion_buckets,
height=height,
width=width,
num_frames=len(audio_tensor_list),
decode_chunk_size=config.decode_chunk_size,
motion_bucket_scale=config.motion_bucket_scale,
fps=config.fps,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale1=config.min_appearance_guidance_scale,
max_guidance_scale1=config.max_appearance_guidance_scale,
min_guidance_scale2=config.audio_guidance_scale,
max_guidance_scale2=config.audio_guidance_scale,
overlap=config.overlap,
shift_offset=config.shift_offset,
frames_per_batch=config.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength
).frames
video = (video * 0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
return video
class Sonic():
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
config = OmegaConf.load(config_file)
def __init__(self,
device_id=0,
enable_interpolate_frame=True,
):
config = self.config
config.use_interframe = enable_interpolate_frame
device = 'cuda:{}'.format(device_id) if device_id > -1 else 'cpu'
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="vae",
variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="image_encoder",
variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
variant="fp16")
add_ip_adapters(unet, [32], [config.ip_audio_scale])
audio2token = AudioProjModel(
seq_len=10, blocks=5, channels=384,
intermediate_dim=1024, output_dim=1024, context_tokens=32
).to(device)
audio2bucket = Audio2bucketModel(
seq_len=50, blocks=1, channels=384,
clip_channels=1024, intermediate_dim=1024, output_dim=1,
context_tokens=2
).to(device)
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
audio2token_checkpoint_path = os.path.join(BASE_DIR, config.audio2token_checkpoint_path)
audio2bucket_checkpoint_path = os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path)
unet.load_state_dict(
torch.load(unet_checkpoint_path, map_location="cpu"),
strict=True,
)
audio2token.load_state_dict(
torch.load(audio2token_checkpoint_path, map_location="cpu"),
strict=True,
)
audio2bucket.load_state_dict(
torch.load(audio2bucket_checkpoint_path, map_location="cpu"),
strict=True,
)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(
f"Do not support weight dtype: {config.weight_dtype}"
)
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
det_path = os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt')
self.face_det = AlignImage(device, det_path=det_path)
if config.use_interframe:
rife = RIFEModel(device=device)
rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
self.rife = rife
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
pipe = SonicPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
)
pipe = pipe.to(device=device, dtype=weight_dtype)
self.pipe = pipe
self.whisper = whisper
self.audio2token = audio2token
self.audio2bucket = audio2bucket
self.image_encoder = image_encoder
self.device = device
print('Sonic init done')
def preprocess(self, image_path, expand_ratio=1.0):
face_image = cv2.imread(image_path)
h, w = face_image.shape[:2]
_, _, bboxes = self.face_det(face_image, maxface=True)
face_num = len(bboxes)
bbox_s = None
if face_num > 0:
x1, y1, ww, hh = bboxes[0]
x2, y2 = x1 + ww, y1 + hh
bbox = x1, y1, x2, y2
bbox_s = process_bbox(bbox, expand_radio=expand_ratio, height=h, width=w)
return {
'face_num': face_num,
'crop_bbox': bbox_s,
}
def crop_image(self, input_image_path, output_image_path, crop_bbox):
face_image = cv2.imread(input_image_path)
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
cv2.imwrite(output_image_path, crop_image)
@torch.no_grad()
def process(self,
image_path,
audio_path,
output_path,
min_resolution=512,
inference_steps=25,
dynamic_scale=1.0,
keep_resolution=False,
seed=None):
config = self.config
device = self.device
pipe = self.pipe
whisper = self.whisper
audio2token = self.audio2token
audio2bucket = self.audio2bucket
image_encoder = self.image_encoder
if seed:
config.seed = seed
config.num_inference_steps = inference_steps
config.motion_bucket_scale = dynamic_scale
seed_everything(config.seed)
video_path = output_path.replace('.mp4', '_noaudio.mp4')
audio_video_path = output_path
# limit=config.frame_num 대신 오디오 전체를 쓰도록 수정
# 만약 config.frame_num이 작아 2초 제한을 걸고 있었다면 제거해야 함
test_data = image_audio_to_tensor(
self.face_det,
self.feature_extractor,
image_path,
audio_path,
limit=-1, # -1 등으로 제한 해제
image_size=min_resolution,
area=config.area
)
if test_data is None:
return -1
height, width = test_data['ref_img'].shape[-2:]
if keep_resolution:
imSrc_ = Image.open(image_path).convert('RGB')
raw_w, raw_h = imSrc_.size
resolution = f'{raw_w//2*2}x{raw_h//2*2}'
else:
resolution = f'{width}x{height}'
video = test(
pipe,
config,
wav_enc=whisper,
audio_pe=audio2token,
audio2bucket=audio2bucket,
image_encoder=image_encoder,
width=width,
height=height,
batch=test_data,
)
# 중간프레임 보간 사용시
if config.use_interframe:
rife = self.rife
out = video.to(device)
results = []
video_len = out.shape[2]
for idx in tqdm(range(video_len - 1), ncols=0):
I1 = out[:, :, idx]
I2 = out[:, :, idx + 1]
middle = rife.inference(I1, I2).clamp(0, 1).detach()
results.append(out[:, :, idx])
results.append(middle)
results.append(out[:, :, video_len - 1])
video = torch.stack(results, 2).cpu()
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * (2 if config.use_interframe else 1))
os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
return 0