Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,381 Bytes
2399e79 ff37225 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 ff37225 2399e79 2279f85 2399e79 2279f85 c54a5d7 2399e79 c54a5d7 2399e79 ff37225 c54a5d7 2399e79 c54a5d7 ff37225 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 ff37225 2399e79 ff37225 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 ff37225 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 9d31513 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 9d31513 c54a5d7 2399e79 c54a5d7 ff37225 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 c54a5d7 2399e79 2279f85 c54a5d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch # 필요 시 사용
# ------------------------------------------------------------------
# 모델 초기화
# ------------------------------------------------------------------
cmd = (
'python3 -m pip install "huggingface_hub[cli]"; '
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)
pipe = Sonic()
# ------------------------------------------------------------------
# 유틸
# ------------------------------------------------------------------
def get_md5(content):
"""바이트/배열에서 md5 해시 문자열 반환"""
md5hash = hashlib.md5(content)
return md5hash.hexdigest()
# ------------------------------------------------------------------
# 비디오 생성
# ------------------------------------------------------------------
@spaces.GPU(duration=300) # 최대 5분까지 GPU 세션 유지
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
expand_ratio = 0.0 # ★ 얼굴 크롭 방지
min_resolution = 512
# 오디오 길이 → 프레임 수 결정 (fps=25, 최대 60초=1500프레임)
audio = AudioSegment.from_file(audio_path)
duration = len(audio) / 1000.0 # 초
fps = 25
max_steps = fps * 60 # 1500
inference_steps = max(1, min(int(duration * fps), max_steps))
print(f"Audio duration: {duration:.2f}s → inference_steps: {inference_steps}")
# 얼굴 정보는 참고용으로만 출력
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
print(f"Face detection info: {face_info}")
if face_info["face_num"] == 0:
print("Warning: face not detected – proceeding with full image.")
# 출력 폴더 보장
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
# 비디오 생성
pipe.process(
img_path,
audio_path,
res_video_path,
min_resolution=min_resolution,
inference_steps=inference_steps,
dynamic_scale=dynamic_scale,
)
return res_video_path
# ------------------------------------------------------------------
# 캐시·경로 설정
# ------------------------------------------------------------------
tmp_path = "./tmp_path/"
res_path = "./res_path/"
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)
# ------------------------------------------------------------------
# Gradio 콜백
# ------------------------------------------------------------------
def process_sonic(image, audio, dynamic_scale):
# 입력 검증
if image is None:
raise gr.Error("Please upload an image")
if audio is None:
raise gr.Error("Please upload an audio file")
img_md5 = get_md5(np.array(image))
audio_md5 = get_md5(audio[1])
print(f"Processing (img={img_md5}, audio={audio_md5})")
# numpy 오디오 → AudioSegment
sampling_rate, arr = audio[:2]
if arr.ndim == 1:
arr = arr[:, None]
audio_segment = AudioSegment(
arr.tobytes(),
frame_rate=sampling_rate,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1],
)
# 경로
image_path = os.path.abspath(os.path.join(tmp_path, f"{img_md5}.png"))
audio_path = os.path.abspath(os.path.join(tmp_path, f"{audio_md5}.wav"))
res_video_path = os.path.abspath(
os.path.join(res_path, f"{img_md5}_{audio_md5}_{dynamic_scale}.mp4")
)
# 저장 / 캐시
if not os.path.exists(image_path):
image.save(image_path)
if not os.path.exists(audio_path):
audio_segment.export(audio_path, format="wav")
if os.path.exists(res_video_path):
print(f"Using cached result: {res_video_path}")
return res_video_path
print(f"Generating new video (dynamic_scale={dynamic_scale})")
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
def get_example():
"""예시 데이터 (필요 시 추가)"""
return []
css = """
.gradio-container { font-family: 'Arial', sans-serif; }
.main-header { text-align: center; color: #2a2a2a; margin-bottom: 2em; }
.parameter-section { background-color: #f5f5f5; padding: 1em; border-radius: 8px; margin: 1em 0; }
.example-section { margin-top: 2em; }
"""
with gr.Blocks(css=css, theme="apriel") as demo:
gr.HTML(
"""
<div class="main-header">
<h1>🎭 Longer Sonic: Advanced Portrait Animation</h1>
<p>Transform still images into dynamic videos synchronized with audio(Demo max 60sec)</p>
</div>
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Portrait Image", elem_id="image_input")
audio_input = gr.Audio(label="Voice/Audio Input", elem_id="audio_input", type="numpy")
dynamic_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Animation Intensity",
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)",
)
process_btn = gr.Button("Generate Animation", variant="primary", elem_id="process_btn")
with gr.Column():
video_output = gr.Video(label="Generated Animation", elem_id="video_output")
process_btn.click(
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
api_name="animate",
)
gr.Examples(
examples=get_example(),
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
cache_examples=False,
)
# ------------------------------------------------------------------
# Launch
# ------------------------------------------------------------------
demo.launch(share=True)
|