Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,922 Bytes
ec118f6 7b4dc6f ec118f6 79d88c4 ec118f6 79d88c4 0329637 7b4dc6f 0329637 79d88c4 0329637 79d88c4 c260fe0 ec118f6 c260fe0 79d88c4 0329637 ec118f6 914dc02 36737d5 ec118f6 c4a0f5f ec118f6 c4a0f5f 79d88c4 0329637 36737d5 ec118f6 36737d5 ec118f6 c4a0f5f ec118f6 c4a0f5f ec118f6 c4a0f5f ec118f6 c4a0f5f ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 c4a0f5f 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 c4a0f5f ec118f6 c4a0f5f ec118f6 c4a0f5f ec118f6 c4a0f5f ec118f6 c4a0f5f 36737d5 1fb410d ec118f6 0329637 c4a0f5f ec118f6 c4a0f5f ec118f6 36737d5 ec118f6 c4a0f5f 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 0329637 ec118f6 c4a0f5f 36737d5 ec118f6 c4a0f5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def test(
pipe,
config,
wav_enc,
audio_pe,
audio2bucket,
image_encoder,
width,
height,
batch,
):
"""Generate a video tensor for the given batch."""
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
image_embeds = image_encoder(clip_img).image_embeds
audio_feature = batch['audio_feature']
audio_len = batch['audio_len']
step = int(config.step)
window = 3000
audio_prompts = []
last_audio_prompts = []
for i in range(0, audio_feature.shape[-1], window):
audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i+window], output_hidden_states=True).hidden_states
last_audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i+window]).last_hidden_state
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
audio_prompt = torch.stack(audio_prompt, dim=2)
audio_prompts.append(audio_prompt)
last_audio_prompts.append(last_audio_prompt)
audio_prompts = torch.cat(audio_prompts, dim=1)
audio_prompts = audio_prompts[:, :audio_len*2]
audio_prompts = torch.cat([
torch.zeros_like(audio_prompts[:, :4]),
audio_prompts,
torch.zeros_like(audio_prompts[:, :6])
], 1)
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
last_audio_prompts = last_audio_prompts[:, :audio_len*2]
last_audio_prompts = torch.cat([
torch.zeros_like(last_audio_prompts[:, :24]),
last_audio_prompts,
torch.zeros_like(last_audio_prompts[:, :26])
], 1)
ref_tensor_list = []
audio_tensor_list = []
uncond_audio_tensor_list = []
motion_buckets = []
for i in tqdm(range(audio_len//step), ncols=0):
audio_clip = audio_prompts[:, i*2*step:i*2*step+10].unsqueeze(0)
audio_clip_for_bucket = last_audio_prompts[:, i*2*step:i*2*step+50].unsqueeze(0)
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
motion_bucket = motion_bucket * 16 + 16
motion_buckets.append(motion_bucket[0])
cond_audio_clip = audio_pe(audio_clip).squeeze(0)
uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
ref_tensor_list.append(ref_img[0])
audio_tensor_list.append(cond_audio_clip[0])
uncond_audio_tensor_list.append(uncond_audio_clip[0])
video = pipe(
ref_img,
clip_img,
face_mask,
audio_tensor_list,
uncond_audio_tensor_list,
motion_buckets,
height=height,
width=width,
num_frames=len(audio_tensor_list),
decode_chunk_size=config.decode_chunk_size,
motion_bucket_scale=config.motion_bucket_scale,
fps=config.fps,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale1=config.min_appearance_guidance_scale,
max_guidance_scale1=config.max_appearance_guidance_scale,
min_guidance_scale2=config.audio_guidance_scale,
max_guidance_scale2=config.audio_guidance_scale,
overlap=config.overlap,
shift_offset=config.shift_offset,
frames_per_batch=config.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength
).frames
video = (video * 0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
return video
class Sonic:
"""High-level interface for the Sonic portrait animation pipeline."""
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
config = self.config
config.use_interframe = enable_interpolate_frame
device = f'cuda:{device_id}' if device_id > -1 else 'cpu'
self.device = device
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config.pretrained_model_name_or_path, subfolder='vae', variant='fp16')
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
config.pretrained_model_name_or_path, subfolder='scheduler')
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.pretrained_model_name_or_path, subfolder='image_encoder', variant='fp16')
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config.pretrained_model_name_or_path, subfolder='unet', variant='fp16')
add_ip_adapters(unet, [32], [config.ip_audio_scale])
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024,
output_dim=1024, context_tokens=32).to(device)
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024,
intermediate_dim=1024, output_dim=1, context_tokens=2).to(device)
unet.load_state_dict(
torch.load(os.path.join(BASE_DIR, config.unet_checkpoint_path), map_location='cpu'), strict=True)
audio2token.load_state_dict(
torch.load(os.path.join(BASE_DIR, config.audio2token_checkpoint_path), map_location='cpu'), strict=True)
audio2bucket.load_state_dict(
torch.load(os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path), map_location='cpu'), strict=True)
dtype_map = {'fp16': torch.float16, 'fp32': torch.float32, 'bf16': torch.bfloat16}
weight_dtype = dtype_map.get(config.weight_dtype)
if weight_dtype is None:
raise ValueError(f"Unsupported weight dtype: {config.weight_dtype}")
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
self.face_det = AlignImage(device, det_path=os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt'))
if config.use_interframe:
self.rife = RIFEModel(device=device)
self.rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
pipe = SonicPipeline(
unet=unet, image_encoder=image_encoder, vae=vae, scheduler=val_noise_scheduler)
self.pipe = pipe.to(device=device, dtype=weight_dtype)
self.whisper = whisper
self.audio2token = audio2token
self.audio2bucket = audio2bucket
self.image_encoder = image_encoder
print('Sonic initialization complete.')
def preprocess(self, image_path: str, expand_ratio: float = 1.0):
face_image = cv2.imread(image_path)
h, w = face_image.shape[:2]
_, _, bboxes = self.face_det(face_image, maxface=True)
face_num = len(bboxes)
bbox_s = []
if face_num > 0:
x1, y1, ww, hh = bboxes[0]
x2, y2 = x1 + ww, y1 + hh
bbox_s = process_bbox((x1, y1, x2, y2), expand_radio=expand_ratio, height=h, width=w)
return {'face_num': face_num, 'crop_bbox': bbox_s}
def crop_image(self, input_image_path: str, output_image_path: str, crop_bbox):
face_image = cv2.imread(input_image_path)
crop_img = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
cv2.imwrite(output_image_path, crop_img)
@torch.no_grad()
def process(self, image_path, audio_path, output_path, min_resolution=512,
inference_steps=25, dynamic_scale=1.0, keep_resolution=False, seed=None):
config = self.config
device = self.device
pipe = self.pipe
whisper = self.whisper
audio2token = self.audio2token
audio2bucket = self.audio2bucket
image_encoder = self.image_encoder
if seed is not None:
config.seed = seed
seed_everything(config.seed)
config.num_inference_steps = inference_steps
config.frame_num = config.fps * 60
config.motion_bucket_scale = dynamic_scale
video_path = output_path.replace('.mp4', '_noaudio.mp4')
audio_video_path = output_path
imSrc_ = Image.open(image_path).convert('RGB')
raw_w, raw_h = imSrc_.size
test_data = image_audio_to_tensor(
self.face_det, self.feature_extractor, image_path, audio_path,
limit=config.frame_num, image_size=min_resolution, area=config.area)
if test_data is None:
return -1
height, width = test_data['ref_img'].shape[-2:]
resolution = f"{width}x{height}" if not keep_resolution else f"{raw_w//2*2}x{raw_h//2*2}"
video = test(pipe, config, wav_enc=whisper, audio_pe=audio2token,
audio2bucket=audio2bucket, image_encoder=image_encoder,
width=width, height=height, batch=test_data)
if config.use_interframe:
out = video.to(device)
results = []
for idx in tqdm(range(out.shape[2]-1), ncols=0):
I1 = out[:, :, idx]
I2 = out[:, :, idx+1]
mid = self.rife.inference(I1, I2).clamp(0,1).detach()
results.extend([out[:, :, idx], mid])
results.append(out[:, :, -1])
video = torch.stack(results, 2).cpu()
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * (2 if config.use_interframe else 1))
os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
return 0
|