File size: 10,922 Bytes
ec118f6
7b4dc6f
ec118f6
79d88c4
ec118f6
79d88c4
0329637
7b4dc6f
0329637
 
 
79d88c4
0329637
79d88c4
c260fe0
ec118f6
c260fe0
79d88c4
 
 
 
0329637
ec118f6
914dc02
36737d5
ec118f6
 
 
 
 
 
 
 
 
c4a0f5f
ec118f6
c4a0f5f
79d88c4
 
0329637
36737d5
ec118f6
 
 
36737d5
ec118f6
 
 
 
 
 
 
 
 
c4a0f5f
 
ec118f6
 
 
 
 
 
c4a0f5f
 
 
 
 
 
ec118f6
 
c4a0f5f
 
 
 
 
 
ec118f6
 
 
 
 
c4a0f5f
 
 
ec118f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36737d5
ec118f6
36737d5
ec118f6
 
 
 
 
 
 
 
36737d5
ec118f6
 
 
 
36737d5
c4a0f5f
36737d5
ec118f6
 
 
36737d5
ec118f6
 
 
36737d5
 
ec118f6
 
 
 
c4a0f5f
ec118f6
c4a0f5f
ec118f6
c4a0f5f
ec118f6
c4a0f5f
ec118f6
 
c4a0f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36737d5
1fb410d
ec118f6
0329637
c4a0f5f
 
ec118f6
c4a0f5f
ec118f6
36737d5
 
ec118f6
 
 
 
 
 
c4a0f5f
36737d5
ec118f6
 
 
 
 
36737d5
ec118f6
36737d5
ec118f6
 
 
 
36737d5
ec118f6
0329637
ec118f6
c4a0f5f
 
36737d5
 
ec118f6
c4a0f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2

from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor

from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage

BASE_DIR = os.path.dirname(os.path.abspath(__file__))


def test(
    pipe,
    config,
    wav_enc,
    audio_pe,
    audio2bucket,
    image_encoder,
    width,
    height,
    batch,
):
    """Generate a video tensor for the given batch."""
    for k, v in batch.items():
        if isinstance(v, torch.Tensor):
            batch[k] = v.unsqueeze(0).to(pipe.device).float()

    ref_img = batch['ref_img']
    clip_img = batch['clip_images']
    face_mask = batch['face_mask']
    image_embeds = image_encoder(clip_img).image_embeds

    audio_feature = batch['audio_feature']
    audio_len = batch['audio_len']
    step = int(config.step)

    window = 3000
    audio_prompts = []
    last_audio_prompts = []
    for i in range(0, audio_feature.shape[-1], window):
        audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i+window], output_hidden_states=True).hidden_states
        last_audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i+window]).last_hidden_state
        last_audio_prompt = last_audio_prompt.unsqueeze(-2)
        audio_prompt = torch.stack(audio_prompt, dim=2)
        audio_prompts.append(audio_prompt)
        last_audio_prompts.append(last_audio_prompt)

    audio_prompts = torch.cat(audio_prompts, dim=1)
    audio_prompts = audio_prompts[:, :audio_len*2]
    audio_prompts = torch.cat([
        torch.zeros_like(audio_prompts[:, :4]),
        audio_prompts,
        torch.zeros_like(audio_prompts[:, :6])
    ], 1)

    last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
    last_audio_prompts = last_audio_prompts[:, :audio_len*2]
    last_audio_prompts = torch.cat([
        torch.zeros_like(last_audio_prompts[:, :24]),
        last_audio_prompts,
        torch.zeros_like(last_audio_prompts[:, :26])
    ], 1)

    ref_tensor_list = []
    audio_tensor_list = []
    uncond_audio_tensor_list = []
    motion_buckets = []
    for i in tqdm(range(audio_len//step), ncols=0):
        audio_clip = audio_prompts[:, i*2*step:i*2*step+10].unsqueeze(0)
        audio_clip_for_bucket = last_audio_prompts[:, i*2*step:i*2*step+50].unsqueeze(0)
        motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
        motion_bucket = motion_bucket * 16 + 16
        motion_buckets.append(motion_bucket[0])

        cond_audio_clip = audio_pe(audio_clip).squeeze(0)
        uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)

        ref_tensor_list.append(ref_img[0])
        audio_tensor_list.append(cond_audio_clip[0])
        uncond_audio_tensor_list.append(uncond_audio_clip[0])

    video = pipe(
        ref_img,
        clip_img,
        face_mask,
        audio_tensor_list,
        uncond_audio_tensor_list,
        motion_buckets,
        height=height,
        width=width,
        num_frames=len(audio_tensor_list),
        decode_chunk_size=config.decode_chunk_size,
        motion_bucket_scale=config.motion_bucket_scale,
        fps=config.fps,
        noise_aug_strength=config.noise_aug_strength,
        min_guidance_scale1=config.min_appearance_guidance_scale,
        max_guidance_scale1=config.max_appearance_guidance_scale,
        min_guidance_scale2=config.audio_guidance_scale,
        max_guidance_scale2=config.audio_guidance_scale,
        overlap=config.overlap,
        shift_offset=config.shift_offset,
        frames_per_batch=config.n_sample_frames,
        num_inference_steps=config.num_inference_steps,
        i2i_noise_strength=config.i2i_noise_strength
    ).frames

    video = (video * 0.5 + 0.5).clamp(0, 1)
    video = torch.cat([video.to(pipe.device)], dim=0).cpu()
    return video


class Sonic:
    """High-level interface for the Sonic portrait animation pipeline."""

    config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
    config = OmegaConf.load(config_file)

    def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
        config = self.config
        config.use_interframe = enable_interpolate_frame

        device = f'cuda:{device_id}' if device_id > -1 else 'cpu'
        self.device = device

        config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)

        vae = AutoencoderKLTemporalDecoder.from_pretrained(
            config.pretrained_model_name_or_path, subfolder='vae', variant='fp16')
        val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
            config.pretrained_model_name_or_path, subfolder='scheduler')
        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            config.pretrained_model_name_or_path, subfolder='image_encoder', variant='fp16')
        unet = UNetSpatioTemporalConditionModel.from_pretrained(
            config.pretrained_model_name_or_path, subfolder='unet', variant='fp16')
        add_ip_adapters(unet, [32], [config.ip_audio_scale])

        audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024,
                                     output_dim=1024, context_tokens=32).to(device)
        audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024,
                                         intermediate_dim=1024, output_dim=1, context_tokens=2).to(device)

        unet.load_state_dict(
            torch.load(os.path.join(BASE_DIR, config.unet_checkpoint_path), map_location='cpu'), strict=True)
        audio2token.load_state_dict(
            torch.load(os.path.join(BASE_DIR, config.audio2token_checkpoint_path), map_location='cpu'), strict=True)
        audio2bucket.load_state_dict(
            torch.load(os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path), map_location='cpu'), strict=True)

        dtype_map = {'fp16': torch.float16, 'fp32': torch.float32, 'bf16': torch.bfloat16}
        weight_dtype = dtype_map.get(config.weight_dtype)
        if weight_dtype is None:
            raise ValueError(f"Unsupported weight dtype: {config.weight_dtype}")

        whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
        whisper.requires_grad_(False)
        self.feature_extractor = AutoFeatureExtractor.from_pretrained(
            os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))

        self.face_det = AlignImage(device, det_path=os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt'))
        if config.use_interframe:
            self.rife = RIFEModel(device=device)
            self.rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))

        image_encoder.to(weight_dtype)
        vae.to(weight_dtype)
        unet.to(weight_dtype)

        pipe = SonicPipeline(
            unet=unet, image_encoder=image_encoder, vae=vae, scheduler=val_noise_scheduler)
        self.pipe = pipe.to(device=device, dtype=weight_dtype)
        self.whisper = whisper
        self.audio2token = audio2token
        self.audio2bucket = audio2bucket
        self.image_encoder = image_encoder

        print('Sonic initialization complete.')

    def preprocess(self, image_path: str, expand_ratio: float = 1.0):
        face_image = cv2.imread(image_path)
        h, w = face_image.shape[:2]
        _, _, bboxes = self.face_det(face_image, maxface=True)
        face_num = len(bboxes)
        bbox_s = []
        if face_num > 0:
            x1, y1, ww, hh = bboxes[0]
            x2, y2 = x1 + ww, y1 + hh
            bbox_s = process_bbox((x1, y1, x2, y2), expand_radio=expand_ratio, height=h, width=w)
        return {'face_num': face_num, 'crop_bbox': bbox_s}

    def crop_image(self, input_image_path: str, output_image_path: str, crop_bbox):
        face_image = cv2.imread(input_image_path)
        crop_img = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
        cv2.imwrite(output_image_path, crop_img)

    @torch.no_grad()
    def process(self, image_path, audio_path, output_path, min_resolution=512,
                inference_steps=25, dynamic_scale=1.0, keep_resolution=False, seed=None):
        config = self.config
        device = self.device

        pipe = self.pipe
        whisper = self.whisper
        audio2token = self.audio2token
        audio2bucket = self.audio2bucket
        image_encoder = self.image_encoder

        if seed is not None:
            config.seed = seed
        seed_everything(config.seed)

        config.num_inference_steps = inference_steps
        config.frame_num = config.fps * 60
        config.motion_bucket_scale = dynamic_scale

        video_path = output_path.replace('.mp4', '_noaudio.mp4')
        audio_video_path = output_path

        imSrc_ = Image.open(image_path).convert('RGB')
        raw_w, raw_h = imSrc_.size

        test_data = image_audio_to_tensor(
            self.face_det, self.feature_extractor, image_path, audio_path,
            limit=config.frame_num, image_size=min_resolution, area=config.area)
        if test_data is None:
            return -1
        height, width = test_data['ref_img'].shape[-2:]
        resolution = f"{width}x{height}" if not keep_resolution else f"{raw_w//2*2}x{raw_h//2*2}"

        video = test(pipe, config, wav_enc=whisper, audio_pe=audio2token,
                     audio2bucket=audio2bucket, image_encoder=image_encoder,
                     width=width, height=height, batch=test_data)

        if config.use_interframe:
            out = video.to(device)
            results = []
            for idx in tqdm(range(out.shape[2]-1), ncols=0):
                I1 = out[:, :, idx]
                I2 = out[:, :, idx+1]
                mid = self.rife.inference(I1, I2).clamp(0,1).detach()
                results.extend([out[:, :, idx], mid])
            results.append(out[:, :, -1])
            video = torch.stack(results, 2).cpu()

        save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * (2 if config.use_interframe else 1))
        os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
        return 0