Spaces:
Running
on
Zero
Running
on
Zero
Update sonic.py
Browse files
sonic.py
CHANGED
@@ -20,9 +20,9 @@ from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
|
20 |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
21 |
from src.dataset.face_align.align import AlignImage
|
22 |
|
23 |
-
|
24 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
25 |
|
|
|
26 |
def test(
|
27 |
pipe,
|
28 |
config,
|
@@ -34,15 +34,15 @@ def test(
|
|
34 |
height,
|
35 |
batch
|
36 |
):
|
|
|
37 |
for k, v in batch.items():
|
38 |
if isinstance(v, torch.Tensor):
|
39 |
batch[k] = v.unsqueeze(0).to(pipe.device).float()
|
|
|
40 |
ref_img = batch['ref_img']
|
41 |
clip_img = batch['clip_images']
|
42 |
face_mask = batch['face_mask']
|
43 |
-
image_embeds = image_encoder(
|
44 |
-
clip_img
|
45 |
-
).image_embeds
|
46 |
|
47 |
audio_feature = batch['audio_feature']
|
48 |
audio_len = batch['audio_len']
|
@@ -52,31 +52,30 @@ def test(
|
|
52 |
audio_prompts = []
|
53 |
last_audio_prompts = []
|
54 |
for i in range(0, audio_feature.shape[-1], window):
|
55 |
-
audio_prompt = wav_enc.encoder(audio_feature[
|
56 |
-
last_audio_prompt = wav_enc.encoder(audio_feature[
|
57 |
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
|
58 |
audio_prompt = torch.stack(audio_prompt, dim=2)
|
59 |
audio_prompts.append(audio_prompt)
|
60 |
last_audio_prompts.append(last_audio_prompt)
|
61 |
|
62 |
audio_prompts = torch.cat(audio_prompts, dim=1)
|
63 |
-
audio_prompts = audio_prompts[
|
64 |
-
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[
|
|
|
65 |
|
66 |
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
|
67 |
-
last_audio_prompts = last_audio_prompts[
|
68 |
-
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[
|
69 |
-
|
70 |
|
71 |
ref_tensor_list = []
|
72 |
audio_tensor_list = []
|
73 |
uncond_audio_tensor_list = []
|
74 |
motion_buckets = []
|
75 |
-
for i in tqdm(range(audio_len//step)):
|
76 |
-
|
77 |
-
|
78 |
-
audio_clip = audio_prompts[:,i*2*step:i*2*step+10].unsqueeze(0)
|
79 |
-
audio_clip_for_bucket = last_audio_prompts[:,i*2*step:i*2*step+50].unsqueeze(0)
|
80 |
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
|
81 |
motion_bucket = motion_bucket * 16 + 16
|
82 |
motion_buckets.append(motion_bucket[0])
|
@@ -102,9 +101,9 @@ def test(
|
|
102 |
motion_bucket_scale=config.motion_bucket_scale,
|
103 |
fps=config.fps,
|
104 |
noise_aug_strength=config.noise_aug_strength,
|
105 |
-
min_guidance_scale1=config.min_appearance_guidance_scale,
|
106 |
max_guidance_scale1=config.max_appearance_guidance_scale,
|
107 |
-
min_guidance_scale2=config.audio_guidance_scale,
|
108 |
max_guidance_scale2=config.audio_guidance_scale,
|
109 |
overlap=config.overlap,
|
110 |
shift_offset=config.shift_offset,
|
@@ -113,73 +112,69 @@ def test(
|
|
113 |
i2i_noise_strength=config.i2i_noise_strength
|
114 |
).frames
|
115 |
|
116 |
-
|
117 |
-
# Concat it with pose tensor
|
118 |
-
# pose_tensor = torch.stack(pose_tensor_list,1).unsqueeze(0)
|
119 |
-
video = (video*0.5 + 0.5).clamp(0, 1)
|
120 |
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
|
121 |
|
122 |
return video
|
123 |
|
124 |
|
125 |
-
class Sonic
|
|
|
|
|
126 |
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
|
127 |
config = OmegaConf.load(config_file)
|
128 |
|
129 |
-
def __init__(self,
|
130 |
-
|
131 |
-
enable_interpolate_frame=True,
|
132 |
-
):
|
133 |
-
|
134 |
config = self.config
|
135 |
config.use_interframe = enable_interpolate_frame
|
136 |
|
137 |
-
device = 'cuda:{}'
|
|
|
138 |
|
|
|
139 |
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
|
140 |
|
|
|
141 |
vae = AutoencoderKLTemporalDecoder.from_pretrained(
|
142 |
-
config.pretrained_model_name_or_path,
|
143 |
subfolder="vae",
|
144 |
-
variant="fp16"
|
145 |
-
|
|
|
146 |
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
|
147 |
-
config.pretrained_model_name_or_path,
|
148 |
-
subfolder="scheduler"
|
149 |
-
|
|
|
150 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
151 |
-
config.pretrained_model_name_or_path,
|
152 |
subfolder="image_encoder",
|
153 |
-
variant="fp16"
|
|
|
|
|
154 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
155 |
config.pretrained_model_name_or_path,
|
156 |
subfolder="unet",
|
157 |
-
variant="fp16"
|
|
|
158 |
add_ip_adapters(unet, [32], [config.ip_audio_scale])
|
159 |
-
|
160 |
-
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024, context_tokens=32).to(device)
|
161 |
-
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024, intermediate_dim=1024, output_dim=1, context_tokens=2).to(device)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
)
|
171 |
-
|
172 |
-
audio2token.load_state_dict(
|
173 |
-
torch.load(audio2token_checkpoint_path, map_location="cpu"),
|
174 |
-
strict=True,
|
175 |
-
)
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
)
|
181 |
-
|
182 |
|
|
|
183 |
if config.weight_dtype == "fp16":
|
184 |
weight_dtype = torch.float16
|
185 |
elif config.weight_dtype == "fp32":
|
@@ -187,54 +182,48 @@ class Sonic():
|
|
187 |
elif config.weight_dtype == "bf16":
|
188 |
weight_dtype = torch.bfloat16
|
189 |
else:
|
190 |
-
raise ValueError(
|
191 |
-
f"Do not support weight dtype: {config.weight_dtype} during training"
|
192 |
-
)
|
193 |
|
|
|
194 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
|
195 |
-
|
196 |
whisper.requires_grad_(False)
|
197 |
-
|
198 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
|
199 |
|
200 |
-
|
|
|
201 |
self.face_det = AlignImage(device, det_path=det_path)
|
202 |
if config.use_interframe:
|
203 |
-
rife = RIFEModel(device=device)
|
204 |
-
rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
|
205 |
-
self.rife = rife
|
206 |
-
|
207 |
|
|
|
208 |
image_encoder.to(weight_dtype)
|
209 |
vae.to(weight_dtype)
|
210 |
unet.to(weight_dtype)
|
211 |
|
|
|
212 |
pipe = SonicPipeline(
|
213 |
unet=unet,
|
214 |
image_encoder=image_encoder,
|
215 |
vae=vae,
|
216 |
scheduler=val_noise_scheduler,
|
217 |
)
|
218 |
-
pipe = pipe.to(device=device, dtype=weight_dtype)
|
219 |
-
|
220 |
-
|
221 |
-
self.pipe = pipe
|
222 |
self.whisper = whisper
|
223 |
self.audio2token = audio2token
|
224 |
self.audio2bucket = audio2bucket
|
225 |
self.image_encoder = image_encoder
|
226 |
-
self.device = device
|
227 |
-
|
228 |
-
print('init done')
|
229 |
|
|
|
230 |
|
231 |
-
|
232 |
-
|
|
|
233 |
face_image = cv2.imread(image_path)
|
234 |
h, w = face_image.shape[:2]
|
235 |
_, _, bboxes = self.face_det(face_image, maxface=True)
|
236 |
face_num = len(bboxes)
|
237 |
-
|
238 |
if face_num > 0:
|
239 |
x1, y1, ww, hh = bboxes[0]
|
240 |
x2, y2 = x1 + ww, y1 + hh
|
@@ -245,86 +234,8 @@ class Sonic():
|
|
245 |
'face_num': face_num,
|
246 |
'crop_bbox': bbox_s,
|
247 |
}
|
248 |
-
|
249 |
-
def crop_image(self,
|
250 |
-
input_image_path,
|
251 |
-
output_image_path,
|
252 |
-
crop_bbox):
|
253 |
face_image = cv2.imread(input_image_path)
|
254 |
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
|
255 |
-
cv2.imwrite(
|
256 |
-
|
257 |
-
@torch.no_grad()
|
258 |
-
def process(self,
|
259 |
-
image_path,
|
260 |
-
audio_path,
|
261 |
-
output_path,
|
262 |
-
min_resolution=512,
|
263 |
-
inference_steps=25,
|
264 |
-
dynamic_scale=1.0,
|
265 |
-
keep_resolution=False,
|
266 |
-
seed=None):
|
267 |
-
|
268 |
-
config = self.config
|
269 |
-
device = self.device
|
270 |
-
pipe = self.pipe
|
271 |
-
whisper = self.whisper
|
272 |
-
audio2token = self.audio2token
|
273 |
-
audio2bucket = self.audio2bucket
|
274 |
-
image_encoder = self.image_encoder
|
275 |
-
|
276 |
-
# specific parameters
|
277 |
-
if seed:
|
278 |
-
config.seed = seed
|
279 |
-
|
280 |
-
config.num_inference_steps = inference_steps
|
281 |
-
|
282 |
-
config.motion_bucket_scale = dynamic_scale
|
283 |
-
|
284 |
-
seed_everything(config.seed)
|
285 |
-
|
286 |
-
video_path = output_path.replace('.mp4', '_noaudio.mp4')
|
287 |
-
audio_video_path = output_path
|
288 |
-
|
289 |
-
imSrc_ = Image.open(image_path).convert('RGB')
|
290 |
-
raw_w, raw_h = imSrc_.size
|
291 |
-
|
292 |
-
test_data = image_audio_to_tensor(self.face_det, self.feature_extractor, image_path, audio_path, limit=config.frame_num, image_size=min_resolution, area=config.area)
|
293 |
-
if test_data is None:
|
294 |
-
return -1
|
295 |
-
height, width = test_data['ref_img'].shape[-2:]
|
296 |
-
if keep_resolution:
|
297 |
-
resolution = f'{raw_w//2*2}x{raw_h//2*2}'
|
298 |
-
else:
|
299 |
-
resolution = f'{width}x{height}'
|
300 |
-
|
301 |
-
video = test(
|
302 |
-
pipe,
|
303 |
-
config,
|
304 |
-
wav_enc=whisper,
|
305 |
-
audio_pe=audio2token,
|
306 |
-
audio2bucket=audio2bucket,
|
307 |
-
image_encoder=image_encoder,
|
308 |
-
width=width,
|
309 |
-
height=height,
|
310 |
-
batch=test_data,
|
311 |
-
)
|
312 |
-
|
313 |
-
if config.use_interframe:
|
314 |
-
rife = self.rife
|
315 |
-
out = video.to(device)
|
316 |
-
results = []
|
317 |
-
video_len = out.shape[2]
|
318 |
-
for idx in tqdm(range(video_len-1), ncols=0):
|
319 |
-
I1 = out[:, :, idx]
|
320 |
-
I2 = out[:, :, idx+1]
|
321 |
-
middle = rife.inference(I1, I2).clamp(0, 1).detach()
|
322 |
-
results.append(out[:, :, idx])
|
323 |
-
results.append(middle)
|
324 |
-
results.append(out[:, :, video_len-1])
|
325 |
-
video = torch.stack(results, 2).cpu()
|
326 |
-
|
327 |
-
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * 2 if config.use_interframe else config.fps)
|
328 |
-
os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
|
329 |
-
return 0
|
330 |
-
|
|
|
20 |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
21 |
from src.dataset.face_align.align import AlignImage
|
22 |
|
|
|
23 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
|
25 |
+
|
26 |
def test(
|
27 |
pipe,
|
28 |
config,
|
|
|
34 |
height,
|
35 |
batch
|
36 |
):
|
37 |
+
"""Run one forward pass to generate the video tensor."""
|
38 |
for k, v in batch.items():
|
39 |
if isinstance(v, torch.Tensor):
|
40 |
batch[k] = v.unsqueeze(0).to(pipe.device).float()
|
41 |
+
|
42 |
ref_img = batch['ref_img']
|
43 |
clip_img = batch['clip_images']
|
44 |
face_mask = batch['face_mask']
|
45 |
+
image_embeds = image_encoder(clip_img).image_embeds
|
|
|
|
|
46 |
|
47 |
audio_feature = batch['audio_feature']
|
48 |
audio_len = batch['audio_len']
|
|
|
52 |
audio_prompts = []
|
53 |
last_audio_prompts = []
|
54 |
for i in range(0, audio_feature.shape[-1], window):
|
55 |
+
audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i + window], output_hidden_states=True).hidden_states
|
56 |
+
last_audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i + window]).last_hidden_state
|
57 |
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
|
58 |
audio_prompt = torch.stack(audio_prompt, dim=2)
|
59 |
audio_prompts.append(audio_prompt)
|
60 |
last_audio_prompts.append(last_audio_prompt)
|
61 |
|
62 |
audio_prompts = torch.cat(audio_prompts, dim=1)
|
63 |
+
audio_prompts = audio_prompts[:, :audio_len * 2]
|
64 |
+
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
|
65 |
+
torch.zeros_like(audio_prompts[:, :6])], 1)
|
66 |
|
67 |
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
|
68 |
+
last_audio_prompts = last_audio_prompts[:, :audio_len * 2]
|
69 |
+
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:, :24]), last_audio_prompts,
|
70 |
+
torch.zeros_like(last_audio_prompts[:, :26])], 1)
|
71 |
|
72 |
ref_tensor_list = []
|
73 |
audio_tensor_list = []
|
74 |
uncond_audio_tensor_list = []
|
75 |
motion_buckets = []
|
76 |
+
for i in tqdm(range(audio_len // step)):
|
77 |
+
audio_clip = audio_prompts[:, i * 2 * step:i * 2 * step + 10].unsqueeze(0)
|
78 |
+
audio_clip_for_bucket = last_audio_prompts[:, i * 2 * step:i * 2 * step + 50].unsqueeze(0)
|
|
|
|
|
79 |
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
|
80 |
motion_bucket = motion_bucket * 16 + 16
|
81 |
motion_buckets.append(motion_bucket[0])
|
|
|
101 |
motion_bucket_scale=config.motion_bucket_scale,
|
102 |
fps=config.fps,
|
103 |
noise_aug_strength=config.noise_aug_strength,
|
104 |
+
min_guidance_scale1=config.min_appearance_guidance_scale,
|
105 |
max_guidance_scale1=config.max_appearance_guidance_scale,
|
106 |
+
min_guidance_scale2=config.audio_guidance_scale,
|
107 |
max_guidance_scale2=config.audio_guidance_scale,
|
108 |
overlap=config.overlap,
|
109 |
shift_offset=config.shift_offset,
|
|
|
112 |
i2i_noise_strength=config.i2i_noise_strength
|
113 |
).frames
|
114 |
|
115 |
+
video = (video * 0.5 + 0.5).clamp(0, 1)
|
|
|
|
|
|
|
116 |
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
|
117 |
|
118 |
return video
|
119 |
|
120 |
|
121 |
+
class Sonic:
|
122 |
+
"""Wrapper class for the Sonic portrait animation pipeline."""
|
123 |
+
|
124 |
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
|
125 |
config = OmegaConf.load(config_file)
|
126 |
|
127 |
+
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
|
128 |
+
# --------- load config & device ---------
|
|
|
|
|
|
|
129 |
config = self.config
|
130 |
config.use_interframe = enable_interpolate_frame
|
131 |
|
132 |
+
device = f'cuda:{device_id}' if device_id > -1 else 'cpu'
|
133 |
+
self.device = device
|
134 |
|
135 |
+
# --------- Model paths ---------
|
136 |
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
|
137 |
|
138 |
+
# --------- Load sub‑modules ---------
|
139 |
vae = AutoencoderKLTemporalDecoder.from_pretrained(
|
140 |
+
config.pretrained_model_name_or_path,
|
141 |
subfolder="vae",
|
142 |
+
variant="fp16"
|
143 |
+
)
|
144 |
+
|
145 |
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
|
146 |
+
config.pretrained_model_name_or_path,
|
147 |
+
subfolder="scheduler"
|
148 |
+
)
|
149 |
+
|
150 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
151 |
+
config.pretrained_model_name_or_path,
|
152 |
subfolder="image_encoder",
|
153 |
+
variant="fp16"
|
154 |
+
)
|
155 |
+
|
156 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
157 |
config.pretrained_model_name_or_path,
|
158 |
subfolder="unet",
|
159 |
+
variant="fp16"
|
160 |
+
)
|
161 |
add_ip_adapters(unet, [32], [config.ip_audio_scale])
|
|
|
|
|
|
|
162 |
|
163 |
+
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024,
|
164 |
+
context_tokens=32).to(device)
|
165 |
+
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024, intermediate_dim=1024,
|
166 |
+
output_dim=1, context_tokens=2).to(device)
|
167 |
|
168 |
+
# --------- Load checkpoints ---------
|
169 |
+
unet_ckpt = torch.load(os.path.join(BASE_DIR, config.unet_checkpoint_path), map_location="cpu")
|
170 |
+
audio2token_ckpt = torch.load(os.path.join(BASE_DIR, config.audio2token_checkpoint_path), map_location="cpu")
|
171 |
+
audio2bucket_ckpt = torch.load(os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path), map_location="cpu")
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
unet.load_state_dict(unet_ckpt, strict=True)
|
174 |
+
audio2token.load_state_dict(audio2token_ckpt, strict=True)
|
175 |
+
audio2bucket.load_state_dict(audio2bucket_ckpt, strict=True)
|
|
|
|
|
176 |
|
177 |
+
# --------- dtype ---------
|
178 |
if config.weight_dtype == "fp16":
|
179 |
weight_dtype = torch.float16
|
180 |
elif config.weight_dtype == "fp32":
|
|
|
182 |
elif config.weight_dtype == "bf16":
|
183 |
weight_dtype = torch.bfloat16
|
184 |
else:
|
185 |
+
raise ValueError(f"Unsupported weight dtype: {config.weight_dtype}")
|
|
|
|
|
186 |
|
187 |
+
# --------- Whisper encoder for audio ---------
|
188 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
|
|
|
189 |
whisper.requires_grad_(False)
|
|
|
190 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
|
191 |
|
192 |
+
# --------- Face detector & frame interpolator ---------
|
193 |
+
det_path = os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt')
|
194 |
self.face_det = AlignImage(device, det_path=det_path)
|
195 |
if config.use_interframe:
|
196 |
+
self.rife = RIFEModel(device=device)
|
197 |
+
self.rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
|
|
|
|
|
198 |
|
199 |
+
# --------- Move modules to device & dtype ---------
|
200 |
image_encoder.to(weight_dtype)
|
201 |
vae.to(weight_dtype)
|
202 |
unet.to(weight_dtype)
|
203 |
|
204 |
+
# --------- Compose pipeline ---------
|
205 |
pipe = SonicPipeline(
|
206 |
unet=unet,
|
207 |
image_encoder=image_encoder,
|
208 |
vae=vae,
|
209 |
scheduler=val_noise_scheduler,
|
210 |
)
|
211 |
+
self.pipe = pipe.to(device=device, dtype=weight_dtype)
|
|
|
|
|
|
|
212 |
self.whisper = whisper
|
213 |
self.audio2token = audio2token
|
214 |
self.audio2bucket = audio2bucket
|
215 |
self.image_encoder = image_encoder
|
|
|
|
|
|
|
216 |
|
217 |
+
print('Sonic initialization complete.')
|
218 |
|
219 |
+
# -------------------------- Public helpers --------------------------
|
220 |
+
def preprocess(self, image_path: str, expand_ratio: float = 1.0):
|
221 |
+
"""Detect face and compute crop bbox (optional)."""
|
222 |
face_image = cv2.imread(image_path)
|
223 |
h, w = face_image.shape[:2]
|
224 |
_, _, bboxes = self.face_det(face_image, maxface=True)
|
225 |
face_num = len(bboxes)
|
226 |
+
bbox_s = []
|
227 |
if face_num > 0:
|
228 |
x1, y1, ww, hh = bboxes[0]
|
229 |
x2, y2 = x1 + ww, y1 + hh
|
|
|
234 |
'face_num': face_num,
|
235 |
'crop_bbox': bbox_s,
|
236 |
}
|
237 |
+
|
238 |
+
def crop_image(self, input_image_path: str, output_image_path: str, crop_bbox):
|
|
|
|
|
|
|
239 |
face_image = cv2.imread(input_image_path)
|
240 |
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
|
241 |
+
cv2.imwrite(output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|