File size: 6,587 Bytes
612b064
79d88c4
 
 
 
 
 
137ab16
 
79d88c4
137ab16
2fc2052
 
 
 
79d88c4
 
6c402fc
79d88c4
 
 
 
 
 
137ab16
79d88c4
 
 
 
137ab16
 
 
 
 
79d88c4
137ab16
 
 
79d88c4
 
 
 
 
137ab16
 
 
 
 
 
 
 
 
 
 
79d88c4
 
137ab16
79d88c4
 
137ab16
 
79d88c4
137ab16
 
 
 
 
 
 
 
79d88c4
137ab16
 
79d88c4
137ab16
 
 
 
 
79d88c4
 
 
 
 
137ab16
 
 
 
 
 
 
 
79d88c4
 
 
137ab16
 
 
79d88c4
137ab16
79d88c4
 
137ab16
 
79d88c4
137ab16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
 
137ab16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
 
 
137ab16
 
 
 
 
79d88c4
137ab16
 
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
137ab16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch

# Initialize the model
cmd = 'python3 -m pip install "huggingface_hub[cli]"; \
huggingface-cli download LeonJoe13/Sonic --local-dir  checkpoints; \
huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir  checkpoints/stable-video-diffusion-img2vid-xt; \
huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
os.system(cmd)

pipe = Sonic()

def get_md5(content):
    md5hash = hashlib.md5(content)
    md5 = md5hash.hexdigest()
    return md5

@spaces.GPU(duration=300)  # Increased duration to handle longer videos
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
    expand_ratio = 0.5
    min_resolution = 512
    inference_steps = 25
    
    # Get audio duration
    audio = AudioSegment.from_file(audio_path)
    duration = len(audio) / 1000.0  # Convert to seconds
    
    face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
    print(f"Face detection info: {face_info}")
    print(f"Audio duration: {duration} seconds")
    
    if face_info['face_num'] > 0:
        crop_image_path = img_path + '.crop.png'
        pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
        img_path = crop_image_path
        os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
        
        # Process with full audio duration
        pipe.process(
            img_path, 
            audio_path, 
            res_video_path, 
            min_resolution=min_resolution,
            inference_steps=inference_steps,
            dynamic_scale=dynamic_scale,
            duration=duration  # Pass the actual duration
        )
    else:
        return -1

tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=1)
os.makedirs(res_path, exist_ok=1)

def process_sonic(image, audio, dynamic_scale):
    # Input validation
    if image is None:
        raise gr.Error("Please upload an image")
    if audio is None:
        raise gr.Error("Please upload an audio file")
        
    img_md5 = get_md5(np.array(image))
    audio_md5 = get_md5(audio[1])
    print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
    
    sampling_rate, arr = audio[:2]
    if len(arr.shape) == 1:
        arr = arr[:, None]
    
    # Create audio segment
    audio_segment = AudioSegment(
        arr.tobytes(),
        frame_rate=sampling_rate,
        sample_width=arr.dtype.itemsize,
        channels=arr.shape[1]
    )
    audio_segment = audio_segment.set_frame_rate(sampling_rate)
    
    # Generate paths
    image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
    audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
    res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
    
    # Save inputs if they don't exist
    if not os.path.exists(image_path):
        image.save(image_path)
    if not os.path.exists(audio_path):
        audio_segment.export(audio_path, format="wav")
    
    # Process or return cached result
    if os.path.exists(res_video_path):
        print(f"Using cached result: {res_video_path}")
        return res_video_path
    else:
        print(f"Generating new video with dynamic scale: {dynamic_scale}")
        return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)

# Enhanced UI
css = """
.gradio-container {
    font-family: 'Arial', sans-serif;
}
.main-header {
    text-align: center;
    color: #2a2a2a;
    margin-bottom: 2em;
}
.parameter-section {
    background-color: #f5f5f5;
    padding: 1em;
    border-radius: 8px;
    margin: 1em 0;
}
.example-section {
    margin-top: 2em;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <div class="main-header">
            <h1>🎭 Sonic: Advanced Portrait Animation</h1>
            <p>Transform still images into dynamic videos synchronized with audio</p>
        </div>
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                type='pil',
                label="Portrait Image",
                elem_id="image_input",
                tool="select"
            )
            
            audio_input = gr.Audio(
                label="Voice/Audio Input",
                elem_id="audio_input",
                type="numpy"
            )
            
            with gr.Box(elem_classes="parameter-section"):
                dynamic_scale = gr.Slider(
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Animation Intensity",
                    info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
                )
                
            process_btn = gr.Button(
                "Generate Animation", 
                variant="primary",
                elem_id="process_btn"
            )
            
        with gr.Column():
            video_output = gr.Video(
                label="Generated Animation",
                elem_id="video_output"
            )
            
    # Process button click
    process_btn.click(
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        api_name="animate"
    )
    
    # Examples section
    gr.Examples(
        examples=get_example(),
        fn=process_sonic,
        inputs=[image_input, audio_input, dynamic_scale],
        outputs=video_output,
        cache_examples=False,
        elem_classes="example-section"
    )
    
    # Footer with attribution and links
    gr.HTML("""
        <div style="text-align: center; margin-top: 2em;">
            <div style="margin-bottom: 1em;">
                <a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
                </a>
                <a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
                </a>
            </div>
            <p>🔔 Note: For optimal results, use clear portrait images and high-quality audio</p>
        </div>
    """)

demo.launch()