Update app.py
Browse files
app.py
CHANGED
@@ -60,6 +60,20 @@ CUSTOM_CSS = """
|
|
60 |
transform: translateY(-1px);
|
61 |
}
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
.output-box {
|
64 |
background: #ffffff;
|
65 |
border-radius: 8px;
|
@@ -87,6 +101,14 @@ CUSTOM_CSS = """
|
|
87 |
background: #f8f9fa;
|
88 |
border-radius: 6px;
|
89 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
"""
|
91 |
|
92 |
DESCRIPTION = """
|
@@ -101,7 +123,148 @@ DESCRIPTION = """
|
|
101 |
if not torch.cuda.is_available():
|
102 |
DESCRIPTION += "\n<p style='color: #dc3545;'>Running on CPU ๐ฅถ This demo requires GPU to function properly.</p>"
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
def create_interface():
|
107 |
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
@@ -132,6 +295,8 @@ def create_interface():
|
|
132 |
chatbot = gr.Chatbot(
|
133 |
elem_classes="chatbot-message"
|
134 |
)
|
|
|
|
|
135 |
vqa_input = gr.Textbox(
|
136 |
placeholder="Ask me anything about the image...",
|
137 |
elem_classes="input-box"
|
@@ -148,7 +313,6 @@ def create_interface():
|
|
148 |
)
|
149 |
|
150 |
with gr.Accordion("๐ ๏ธ Advanced Settings", open=False, elem_classes="advanced-settings"):
|
151 |
-
# ๊ณ ๊ธ ์ค์ ์ปจํธ๋กค๋ค...
|
152 |
with gr.Row():
|
153 |
with gr.Column():
|
154 |
text_decoding_method = gr.Radio(
|
@@ -161,28 +325,146 @@ def create_interface():
|
|
161 |
maximum=1.0,
|
162 |
value=1.0,
|
163 |
label="Temperature",
|
|
|
164 |
elem_classes="slider-container"
|
165 |
)
|
166 |
-
with gr.Column():
|
167 |
length_penalty = gr.Slider(
|
168 |
minimum=-1.0,
|
169 |
maximum=2.0,
|
170 |
value=1.0,
|
171 |
label="Length Penalty",
|
|
|
172 |
elem_classes="slider-container"
|
173 |
)
|
|
|
174 |
repetition_penalty = gr.Slider(
|
175 |
minimum=1.0,
|
176 |
maximum=5.0,
|
177 |
value=1.5,
|
178 |
label="Repetition Penalty",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
elem_classes="slider-container"
|
180 |
)
|
181 |
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
return demo
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
demo = create_interface()
|
188 |
-
demo.queue(max_size=10).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
transform: translateY(-1px);
|
61 |
}
|
62 |
|
63 |
+
.button-secondary {
|
64 |
+
background: #f8f9fa;
|
65 |
+
color: #1a73e8;
|
66 |
+
border: 1px solid #1a73e8;
|
67 |
+
padding: 0.75rem 1.5rem;
|
68 |
+
border-radius: 8px;
|
69 |
+
cursor: pointer;
|
70 |
+
transition: all 0.3s ease;
|
71 |
+
}
|
72 |
+
|
73 |
+
.button-secondary:hover {
|
74 |
+
background: #e8f0fe;
|
75 |
+
}
|
76 |
+
|
77 |
.output-box {
|
78 |
background: #ffffff;
|
79 |
border-radius: 8px;
|
|
|
101 |
background: #f8f9fa;
|
102 |
border-radius: 6px;
|
103 |
}
|
104 |
+
|
105 |
+
.examples-container {
|
106 |
+
margin-top: 2rem;
|
107 |
+
padding: 1rem;
|
108 |
+
background: #ffffff;
|
109 |
+
border-radius: 8px;
|
110 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
111 |
+
}
|
112 |
"""
|
113 |
|
114 |
DESCRIPTION = """
|
|
|
123 |
if not torch.cuda.is_available():
|
124 |
DESCRIPTION += "\n<p style='color: #dc3545;'>Running on CPU ๐ฅถ This demo requires GPU to function properly.</p>"
|
125 |
|
126 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
127 |
+
|
128 |
+
MODEL_ID_OPT_2_7B = "Salesforce/blip2-opt-2.7b"
|
129 |
+
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
|
130 |
+
MODEL_ID_FLAN_T5_XL = "Salesforce/blip2-flan-t5-xl"
|
131 |
+
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
|
132 |
+
MODEL_ID = os.getenv("MODEL_ID", MODEL_ID_FLAN_T5_XXL)
|
133 |
+
|
134 |
+
if MODEL_ID not in [MODEL_ID_OPT_2_7B, MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XL, MODEL_ID_FLAN_T5_XXL]:
|
135 |
+
error_message = f"Invalid MODEL_ID: {MODEL_ID}"
|
136 |
+
raise ValueError(error_message)
|
137 |
+
|
138 |
+
if torch.cuda.is_available():
|
139 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
140 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
141 |
+
MODEL_ID,
|
142 |
+
device_map="auto",
|
143 |
+
quantization_config=BitsAndBytesConfig(load_in_8bit=True)
|
144 |
+
)
|
145 |
+
|
146 |
+
@spaces.GPU
|
147 |
+
def generate_caption(
|
148 |
+
image: PIL.Image.Image,
|
149 |
+
decoding_method: str = "Nucleus sampling",
|
150 |
+
temperature: float = 1.0,
|
151 |
+
length_penalty: float = 1.0,
|
152 |
+
repetition_penalty: float = 1.5,
|
153 |
+
max_length: int = 50,
|
154 |
+
min_length: int = 1,
|
155 |
+
num_beams: int = 5,
|
156 |
+
top_p: float = 0.9,
|
157 |
+
) -> str:
|
158 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
159 |
+
generated_ids = model.generate(
|
160 |
+
pixel_values=inputs.pixel_values,
|
161 |
+
do_sample=decoding_method == "Nucleus sampling",
|
162 |
+
temperature=temperature,
|
163 |
+
length_penalty=length_penalty,
|
164 |
+
repetition_penalty=repetition_penalty,
|
165 |
+
max_length=max_length,
|
166 |
+
min_length=min_length,
|
167 |
+
num_beams=num_beams,
|
168 |
+
top_p=top_p,
|
169 |
+
)
|
170 |
+
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
171 |
+
|
172 |
+
@spaces.GPU
|
173 |
+
def answer_question(
|
174 |
+
image: PIL.Image.Image,
|
175 |
+
prompt: str,
|
176 |
+
decoding_method: str = "Nucleus sampling",
|
177 |
+
temperature: float = 1.0,
|
178 |
+
length_penalty: float = 1.0,
|
179 |
+
repetition_penalty: float = 1.5,
|
180 |
+
max_length: int = 50,
|
181 |
+
min_length: int = 1,
|
182 |
+
num_beams: int = 5,
|
183 |
+
top_p: float = 0.9,
|
184 |
+
) -> str:
|
185 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
186 |
+
generated_ids = model.generate(
|
187 |
+
**inputs,
|
188 |
+
do_sample=decoding_method == "Nucleus sampling",
|
189 |
+
temperature=temperature,
|
190 |
+
length_penalty=length_penalty,
|
191 |
+
repetition_penalty=repetition_penalty,
|
192 |
+
max_length=max_length,
|
193 |
+
min_length=min_length,
|
194 |
+
num_beams=num_beams,
|
195 |
+
top_p=top_p,
|
196 |
+
)
|
197 |
+
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
198 |
+
|
199 |
+
def postprocess_output(output: str) -> str:
|
200 |
+
if output and output[-1] not in string.punctuation:
|
201 |
+
output += "."
|
202 |
+
return output
|
203 |
+
|
204 |
+
def chat(
|
205 |
+
image: PIL.Image.Image,
|
206 |
+
text: str,
|
207 |
+
decoding_method: str = "Nucleus sampling",
|
208 |
+
temperature: float = 1.0,
|
209 |
+
length_penalty: float = 1.0,
|
210 |
+
repetition_penalty: float = 1.5,
|
211 |
+
max_length: int = 50,
|
212 |
+
min_length: int = 1,
|
213 |
+
num_beams: int = 5,
|
214 |
+
top_p: float = 0.9,
|
215 |
+
history_orig: list[str] | None = None,
|
216 |
+
history_qa: list[str] | None = None,
|
217 |
+
) -> tuple[list[tuple[str, str]], list[str], list[str]]:
|
218 |
+
history_orig = history_orig or []
|
219 |
+
history_qa = history_qa or []
|
220 |
+
history_orig.append(text)
|
221 |
+
text_qa = f"Question: {text} Answer:"
|
222 |
+
history_qa.append(text_qa)
|
223 |
+
prompt = " ".join(history_qa)
|
224 |
+
|
225 |
+
output = answer_question(
|
226 |
+
image=image,
|
227 |
+
prompt=prompt,
|
228 |
+
decoding_method=decoding_method,
|
229 |
+
temperature=temperature,
|
230 |
+
length_penalty=length_penalty,
|
231 |
+
repetition_penalty=repetition_penalty,
|
232 |
+
max_length=max_length,
|
233 |
+
min_length=min_length,
|
234 |
+
num_beams=num_beams,
|
235 |
+
top_p=top_p,
|
236 |
+
)
|
237 |
+
output = postprocess_output(output)
|
238 |
+
history_orig.append(output)
|
239 |
+
history_qa.append(output)
|
240 |
+
|
241 |
+
chat_val = list(zip(history_orig[0::2], history_orig[1::2], strict=False))
|
242 |
+
return chat_val, history_orig, history_qa
|
243 |
+
|
244 |
+
chat.zerogpu = True # type: ignore
|
245 |
+
|
246 |
+
examples = [
|
247 |
+
[
|
248 |
+
"images/house.png",
|
249 |
+
"How could someone get out of the house?",
|
250 |
+
],
|
251 |
+
[
|
252 |
+
"images/flower.jpg",
|
253 |
+
"What is this flower and where is it's origin?",
|
254 |
+
],
|
255 |
+
[
|
256 |
+
"images/pizza.jpg",
|
257 |
+
"What are steps to cook it?",
|
258 |
+
],
|
259 |
+
[
|
260 |
+
"images/sunset.jpg",
|
261 |
+
"Here is a romantic message going along the photo:",
|
262 |
+
],
|
263 |
+
[
|
264 |
+
"images/forbidden_city.webp",
|
265 |
+
"In what dynasties was this place built?",
|
266 |
+
],
|
267 |
+
]
|
268 |
|
269 |
def create_interface():
|
270 |
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
|
|
295 |
chatbot = gr.Chatbot(
|
296 |
elem_classes="chatbot-message"
|
297 |
)
|
298 |
+
history_orig = gr.State(value=[])
|
299 |
+
history_qa = gr.State(value=[])
|
300 |
vqa_input = gr.Textbox(
|
301 |
placeholder="Ask me anything about the image...",
|
302 |
elem_classes="input-box"
|
|
|
313 |
)
|
314 |
|
315 |
with gr.Accordion("๐ ๏ธ Advanced Settings", open=False, elem_classes="advanced-settings"):
|
|
|
316 |
with gr.Row():
|
317 |
with gr.Column():
|
318 |
text_decoding_method = gr.Radio(
|
|
|
325 |
maximum=1.0,
|
326 |
value=1.0,
|
327 |
label="Temperature",
|
328 |
+
info="Used with nucleus sampling",
|
329 |
elem_classes="slider-container"
|
330 |
)
|
|
|
331 |
length_penalty = gr.Slider(
|
332 |
minimum=-1.0,
|
333 |
maximum=2.0,
|
334 |
value=1.0,
|
335 |
label="Length Penalty",
|
336 |
+
info="Set to larger for longer sequence",
|
337 |
elem_classes="slider-container"
|
338 |
)
|
339 |
+
with gr.Column():
|
340 |
repetition_penalty = gr.Slider(
|
341 |
minimum=1.0,
|
342 |
maximum=5.0,
|
343 |
value=1.5,
|
344 |
label="Repetition Penalty",
|
345 |
+
info="Larger value prevents repetition",
|
346 |
+
elem_classes="slider-container"
|
347 |
+
)
|
348 |
+
max_length = gr.Slider(
|
349 |
+
minimum=20,
|
350 |
+
maximum=512,
|
351 |
+
value=50,
|
352 |
+
label="Max Length",
|
353 |
+
elem_classes="slider-container"
|
354 |
+
)
|
355 |
+
min_length = gr.Slider(
|
356 |
+
minimum=1,
|
357 |
+
maximum=100,
|
358 |
+
value=1,
|
359 |
+
label="Min Length",
|
360 |
+
elem_classes="slider-container"
|
361 |
+
)
|
362 |
+
num_beams = gr.Slider(
|
363 |
+
minimum=1,
|
364 |
+
maximum=10,
|
365 |
+
value=5,
|
366 |
+
label="Number of Beams",
|
367 |
+
elem_classes="slider-container"
|
368 |
+
)
|
369 |
+
top_p = gr.Slider(
|
370 |
+
minimum=0.5,
|
371 |
+
maximum=1.0,
|
372 |
+
value=0.9,
|
373 |
+
label="Top P",
|
374 |
+
info="Used with nucleus sampling",
|
375 |
elem_classes="slider-container"
|
376 |
)
|
377 |
|
378 |
+
with gr.Group(elem_classes="examples-container"):
|
379 |
+
gr.Examples(
|
380 |
+
examples=examples,
|
381 |
+
inputs=[image, vqa_input],
|
382 |
+
label="Try these examples"
|
383 |
+
)
|
384 |
+
|
385 |
+
# Event handlers
|
386 |
+
caption_button.click(
|
387 |
+
fn=generate_caption,
|
388 |
+
inputs=[
|
389 |
+
image,
|
390 |
+
text_decoding_method,
|
391 |
+
temperature,
|
392 |
+
length_penalty,
|
393 |
+
repetition_penalty,
|
394 |
+
max_length,
|
395 |
+
min_length,
|
396 |
+
num_beams,
|
397 |
+
top_p,
|
398 |
+
],
|
399 |
+
outputs=caption_output,
|
400 |
+
api_name="caption",
|
401 |
+
)
|
402 |
+
|
403 |
+
chat_inputs = [
|
404 |
+
image,
|
405 |
+
vqa_input,
|
406 |
+
text_decoding_method,
|
407 |
+
temperature,
|
408 |
+
length_penalty,
|
409 |
+
repetition_penalty,
|
410 |
+
max_length,
|
411 |
+
min_length,
|
412 |
+
num_beams,
|
413 |
+
top_p,
|
414 |
+
history_orig,
|
415 |
+
history_qa,
|
416 |
+
]
|
417 |
+
chat_outputs = [
|
418 |
+
chatbot,
|
419 |
+
history_orig,
|
420 |
+
history_qa,
|
421 |
+
]
|
422 |
+
|
423 |
+
vqa_input.submit(
|
424 |
+
fn=chat,
|
425 |
+
inputs=chat_inputs,
|
426 |
+
outputs=chat_outputs,
|
427 |
+
api_name="chat",
|
428 |
+
).success(
|
429 |
+
fn=lambda: "",
|
430 |
+
outputs=vqa_input,
|
431 |
+
queue=False,
|
432 |
+
api_name=False,
|
433 |
+
)
|
434 |
+
|
435 |
+
clear_button.click(
|
436 |
+
fn=lambda: ("", [], [], []),
|
437 |
+
inputs=None,
|
438 |
+
outputs=[
|
439 |
+
vqa_input,
|
440 |
+
chatbot,
|
441 |
+
history_orig,
|
442 |
+
history_qa,
|
443 |
+
],
|
444 |
+
queue=False,
|
445 |
+
api_name="clear",
|
446 |
+
)
|
447 |
+
|
448 |
+
image.change(
|
449 |
+
fn=lambda: ("", [], [], []),
|
450 |
+
inputs=None,
|
451 |
+
outputs=[
|
452 |
+
caption_output,
|
453 |
+
chatbot,
|
454 |
+
history_orig,
|
455 |
+
history_qa,
|
456 |
+
],
|
457 |
+
queue=False,
|
458 |
+
)
|
459 |
+
|
460 |
return demo
|
461 |
|
462 |
if __name__ == "__main__":
|
463 |
demo = create_interface()
|
464 |
+
demo.queue(max_size=10).launch(),
|
465 |
+
).success(
|
466 |
+
fn=lambda: "",
|
467 |
+
outputs=vqa_input,
|
468 |
+
queue=False,
|
469 |
+
api_name=False,
|
470 |
+
)
|