Update app.py
Browse files
app.py
CHANGED
@@ -2,326 +2,187 @@
|
|
2 |
|
3 |
import os
|
4 |
import string
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import PIL.Image
|
8 |
import spaces
|
9 |
import torch
|
10 |
from transformers import AutoProcessor, BitsAndBytesConfig, Blip2ForConditionalGeneration
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
if not torch.cuda.is_available():
|
15 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
prompt: str,
|
66 |
-
decoding_method: str = "Nucleus sampling",
|
67 |
-
temperature: float = 1.0,
|
68 |
-
length_penalty: float = 1.0,
|
69 |
-
repetition_penalty: float = 1.5,
|
70 |
-
max_length: int = 50,
|
71 |
-
min_length: int = 1,
|
72 |
-
num_beams: int = 5,
|
73 |
-
top_p: float = 0.9,
|
74 |
-
) -> str:
|
75 |
-
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
76 |
-
generated_ids = model.generate(
|
77 |
-
**inputs,
|
78 |
-
do_sample=decoding_method == "Nucleus sampling",
|
79 |
-
temperature=temperature,
|
80 |
-
length_penalty=length_penalty,
|
81 |
-
repetition_penalty=repetition_penalty,
|
82 |
-
max_length=max_length,
|
83 |
-
min_length=min_length,
|
84 |
-
num_beams=num_beams,
|
85 |
-
top_p=top_p,
|
86 |
-
)
|
87 |
-
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
88 |
-
|
89 |
-
|
90 |
-
def postprocess_output(output: str) -> str:
|
91 |
-
if output and output[-1] not in string.punctuation:
|
92 |
-
output += "."
|
93 |
-
return output
|
94 |
-
|
95 |
-
|
96 |
-
def chat(
|
97 |
-
image: PIL.Image.Image,
|
98 |
-
text: str,
|
99 |
-
decoding_method: str = "Nucleus sampling",
|
100 |
-
temperature: float = 1.0,
|
101 |
-
length_penalty: float = 1.0,
|
102 |
-
repetition_penalty: float = 1.5,
|
103 |
-
max_length: int = 50,
|
104 |
-
min_length: int = 1,
|
105 |
-
num_beams: int = 5,
|
106 |
-
top_p: float = 0.9,
|
107 |
-
history_orig: list[str] | None = None,
|
108 |
-
history_qa: list[str] | None = None,
|
109 |
-
) -> tuple[list[tuple[str, str]], list[str], list[str]]:
|
110 |
-
history_orig = history_orig or []
|
111 |
-
history_qa = history_qa or []
|
112 |
-
history_orig.append(text)
|
113 |
-
text_qa = f"Question: {text} Answer:"
|
114 |
-
history_qa.append(text_qa)
|
115 |
-
prompt = " ".join(history_qa)
|
116 |
-
|
117 |
-
output = answer_question(
|
118 |
-
image=image,
|
119 |
-
prompt=prompt,
|
120 |
-
decoding_method=decoding_method,
|
121 |
-
temperature=temperature,
|
122 |
-
length_penalty=length_penalty,
|
123 |
-
repetition_penalty=repetition_penalty,
|
124 |
-
max_length=max_length,
|
125 |
-
min_length=min_length,
|
126 |
-
num_beams=num_beams,
|
127 |
-
top_p=top_p,
|
128 |
-
)
|
129 |
-
output = postprocess_output(output)
|
130 |
-
history_orig.append(output)
|
131 |
-
history_qa.append(output)
|
132 |
-
|
133 |
-
chat_val = list(zip(history_orig[0::2], history_orig[1::2], strict=False))
|
134 |
-
return chat_val, history_orig, history_qa
|
135 |
-
|
136 |
-
|
137 |
-
chat.zerogpu = True # type: ignore
|
138 |
-
|
139 |
-
|
140 |
-
examples = [
|
141 |
-
[
|
142 |
-
"images/house.png",
|
143 |
-
"How could someone get out of the house?",
|
144 |
-
],
|
145 |
-
[
|
146 |
-
"images/flower.jpg",
|
147 |
-
"What is this flower and where is it's origin?",
|
148 |
-
],
|
149 |
-
[
|
150 |
-
"images/pizza.jpg",
|
151 |
-
"What are steps to cook it?",
|
152 |
-
],
|
153 |
-
[
|
154 |
-
"images/sunset.jpg",
|
155 |
-
"Here is a romantic message going along the photo:",
|
156 |
-
],
|
157 |
-
[
|
158 |
-
"images/forbidden_city.webp",
|
159 |
-
"In what dynasties was this place built?",
|
160 |
-
],
|
161 |
-
]
|
162 |
-
|
163 |
-
with gr.Blocks(css_paths="style.css") as demo:
|
164 |
-
gr.Markdown(DESCRIPTION)
|
165 |
-
|
166 |
-
with gr.Group():
|
167 |
-
image = gr.Image(type="pil")
|
168 |
-
with gr.Tabs():
|
169 |
-
with gr.Tab(label="Image Captioning"):
|
170 |
-
caption_button = gr.Button("Caption it!")
|
171 |
-
caption_output = gr.Textbox(label="Caption Output", show_label=False, container=False)
|
172 |
-
with gr.Tab(label="Visual Question Answering"):
|
173 |
-
chatbot = gr.Chatbot(label="VQA Chat", show_label=False)
|
174 |
-
history_orig = gr.State(value=[])
|
175 |
-
history_qa = gr.State(value=[])
|
176 |
-
vqa_input = gr.Text(label="Chat Input", show_label=False, max_lines=1, container=False)
|
177 |
with gr.Row():
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
max_length = gr.Slider(
|
211 |
-
label="Max Length",
|
212 |
-
minimum=20,
|
213 |
-
maximum=512,
|
214 |
-
step=1,
|
215 |
-
value=50,
|
216 |
-
)
|
217 |
-
min_length = gr.Slider(
|
218 |
-
label="Minimum Length",
|
219 |
-
minimum=1,
|
220 |
-
maximum=100,
|
221 |
-
step=1,
|
222 |
-
value=1,
|
223 |
-
)
|
224 |
-
num_beams = gr.Slider(
|
225 |
-
label="Number of Beams",
|
226 |
-
minimum=1,
|
227 |
-
maximum=10,
|
228 |
-
step=1,
|
229 |
-
value=5,
|
230 |
-
)
|
231 |
-
top_p = gr.Slider(
|
232 |
-
label="Top P",
|
233 |
-
info="Used with nucleus sampling.",
|
234 |
-
minimum=0.5,
|
235 |
-
maximum=1.0,
|
236 |
-
step=0.1,
|
237 |
-
value=0.9,
|
238 |
-
)
|
239 |
-
|
240 |
-
gr.Examples(
|
241 |
-
examples=examples,
|
242 |
-
inputs=[image, vqa_input],
|
243 |
-
)
|
244 |
-
|
245 |
-
caption_button.click(
|
246 |
-
fn=generate_caption,
|
247 |
-
inputs=[
|
248 |
-
image,
|
249 |
-
text_decoding_method,
|
250 |
-
temperature,
|
251 |
-
length_penalty,
|
252 |
-
repetition_penalty,
|
253 |
-
max_length,
|
254 |
-
min_length,
|
255 |
-
num_beams,
|
256 |
-
top_p,
|
257 |
-
],
|
258 |
-
outputs=caption_output,
|
259 |
-
api_name="caption",
|
260 |
-
)
|
261 |
-
|
262 |
-
chat_inputs = [
|
263 |
-
image,
|
264 |
-
vqa_input,
|
265 |
-
text_decoding_method,
|
266 |
-
temperature,
|
267 |
-
length_penalty,
|
268 |
-
repetition_penalty,
|
269 |
-
max_length,
|
270 |
-
min_length,
|
271 |
-
num_beams,
|
272 |
-
top_p,
|
273 |
-
history_orig,
|
274 |
-
history_qa,
|
275 |
-
]
|
276 |
-
chat_outputs = [
|
277 |
-
chatbot,
|
278 |
-
history_orig,
|
279 |
-
history_qa,
|
280 |
-
]
|
281 |
-
vqa_input.submit(
|
282 |
-
fn=chat,
|
283 |
-
inputs=chat_inputs,
|
284 |
-
outputs=chat_outputs,
|
285 |
-
).success(
|
286 |
-
fn=lambda: "",
|
287 |
-
outputs=vqa_input,
|
288 |
-
queue=False,
|
289 |
-
api_name=False,
|
290 |
-
)
|
291 |
-
chat_button.click(
|
292 |
-
fn=chat,
|
293 |
-
inputs=chat_inputs,
|
294 |
-
outputs=chat_outputs,
|
295 |
-
api_name="chat",
|
296 |
-
).success(
|
297 |
-
fn=lambda: "",
|
298 |
-
outputs=vqa_input,
|
299 |
-
queue=False,
|
300 |
-
api_name=False,
|
301 |
-
)
|
302 |
-
clear_chat_button.click(
|
303 |
-
fn=lambda: ("", [], [], []),
|
304 |
-
inputs=None,
|
305 |
-
outputs=[
|
306 |
-
vqa_input,
|
307 |
-
chatbot,
|
308 |
-
history_orig,
|
309 |
-
history_qa,
|
310 |
-
],
|
311 |
-
queue=False,
|
312 |
-
api_name="clear",
|
313 |
-
)
|
314 |
-
image.change(
|
315 |
-
fn=lambda: ("", [], [], []),
|
316 |
-
inputs=None,
|
317 |
-
outputs=[
|
318 |
-
caption_output,
|
319 |
-
chatbot,
|
320 |
-
history_orig,
|
321 |
-
history_qa,
|
322 |
-
],
|
323 |
-
queue=False,
|
324 |
-
)
|
325 |
|
326 |
if __name__ == "__main__":
|
327 |
-
demo
|
|
|
|
2 |
|
3 |
import os
|
4 |
import string
|
|
|
5 |
import gradio as gr
|
6 |
import PIL.Image
|
7 |
import spaces
|
8 |
import torch
|
9 |
from transformers import AutoProcessor, BitsAndBytesConfig, Blip2ForConditionalGeneration
|
10 |
|
11 |
+
# 스타일 상수 정의
|
12 |
+
CUSTOM_CSS = """
|
13 |
+
.container {
|
14 |
+
max-width: 1000px;
|
15 |
+
margin: auto;
|
16 |
+
padding: 2rem;
|
17 |
+
background: linear-gradient(to bottom right, #ffffff, #f8f9fa);
|
18 |
+
border-radius: 15px;
|
19 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
20 |
+
}
|
21 |
+
|
22 |
+
.title {
|
23 |
+
font-size: 2.5rem;
|
24 |
+
color: #1a73e8;
|
25 |
+
text-align: center;
|
26 |
+
margin-bottom: 2rem;
|
27 |
+
font-weight: bold;
|
28 |
+
}
|
29 |
+
|
30 |
+
.tab-nav {
|
31 |
+
background: #f8f9fa;
|
32 |
+
border-radius: 10px;
|
33 |
+
padding: 0.5rem;
|
34 |
+
margin-bottom: 1rem;
|
35 |
+
}
|
36 |
+
|
37 |
+
.input-box {
|
38 |
+
border: 2px solid #e0e0e0;
|
39 |
+
border-radius: 8px;
|
40 |
+
transition: all 0.3s ease;
|
41 |
+
}
|
42 |
+
|
43 |
+
.input-box:focus {
|
44 |
+
border-color: #1a73e8;
|
45 |
+
box-shadow: 0 0 0 2px rgba(26, 115, 232, 0.2);
|
46 |
+
}
|
47 |
+
|
48 |
+
.button-primary {
|
49 |
+
background: #1a73e8;
|
50 |
+
color: white;
|
51 |
+
padding: 0.75rem 1.5rem;
|
52 |
+
border-radius: 8px;
|
53 |
+
border: none;
|
54 |
+
cursor: pointer;
|
55 |
+
transition: all 0.3s ease;
|
56 |
+
}
|
57 |
+
|
58 |
+
.button-primary:hover {
|
59 |
+
background: #1557b0;
|
60 |
+
transform: translateY(-1px);
|
61 |
+
}
|
62 |
+
|
63 |
+
.output-box {
|
64 |
+
background: #ffffff;
|
65 |
+
border-radius: 8px;
|
66 |
+
padding: 1rem;
|
67 |
+
margin-top: 1rem;
|
68 |
+
border: 1px solid #e0e0e0;
|
69 |
+
}
|
70 |
+
|
71 |
+
.chatbot-message {
|
72 |
+
padding: 1rem;
|
73 |
+
margin: 0.5rem 0;
|
74 |
+
border-radius: 8px;
|
75 |
+
background: #f8f9fa;
|
76 |
+
}
|
77 |
+
|
78 |
+
.advanced-settings {
|
79 |
+
background: #ffffff;
|
80 |
+
border-radius: 8px;
|
81 |
+
padding: 1rem;
|
82 |
+
margin-top: 1rem;
|
83 |
+
}
|
84 |
+
|
85 |
+
.slider-container {
|
86 |
+
padding: 0.5rem;
|
87 |
+
background: #f8f9fa;
|
88 |
+
border-radius: 6px;
|
89 |
+
}
|
90 |
+
"""
|
91 |
+
|
92 |
+
DESCRIPTION = """
|
93 |
+
<div class="title">
|
94 |
+
🖼️ BLIP-2 Visual Intelligence System
|
95 |
+
</div>
|
96 |
+
<p style='text-align: center; color: #666;'>
|
97 |
+
Advanced AI system for image understanding and natural conversation
|
98 |
+
</p>
|
99 |
+
"""
|
100 |
|
101 |
if not torch.cuda.is_available():
|
102 |
+
DESCRIPTION += "\n<p style='color: #dc3545;'>Running on CPU 🥶 This demo requires GPU to function properly.</p>"
|
103 |
+
|
104 |
+
# 모델 설정 부분은 동일하게 유지...
|
105 |
+
|
106 |
+
def create_interface():
|
107 |
+
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
108 |
+
gr.Markdown(DESCRIPTION)
|
109 |
+
|
110 |
+
with gr.Group(elem_classes="container"):
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column(scale=1):
|
113 |
+
image = gr.Image(
|
114 |
+
type="pil",
|
115 |
+
label="Upload Image",
|
116 |
+
elem_classes="input-box"
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Column(scale=2):
|
120 |
+
with gr.Tabs(elem_classes="tab-nav"):
|
121 |
+
with gr.Tab(label="✨ Image Captioning"):
|
122 |
+
caption_button = gr.Button(
|
123 |
+
"Generate Caption",
|
124 |
+
elem_classes="button-primary"
|
125 |
+
)
|
126 |
+
caption_output = gr.Textbox(
|
127 |
+
label="Generated Caption",
|
128 |
+
elem_classes="output-box"
|
129 |
+
)
|
130 |
+
|
131 |
+
with gr.Tab(label="💭 Visual Q&A"):
|
132 |
+
chatbot = gr.Chatbot(
|
133 |
+
elem_classes="chatbot-message"
|
134 |
+
)
|
135 |
+
vqa_input = gr.Textbox(
|
136 |
+
placeholder="Ask me anything about the image...",
|
137 |
+
elem_classes="input-box"
|
138 |
+
)
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
clear_button = gr.Button(
|
142 |
+
"Clear Chat",
|
143 |
+
elem_classes="button-secondary"
|
144 |
+
)
|
145 |
+
submit_button = gr.Button(
|
146 |
+
"Send Message",
|
147 |
+
elem_classes="button-primary"
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Accordion("🛠️ Advanced Settings", open=False, elem_classes="advanced-settings"):
|
151 |
+
# 고급 설정 컨트롤들...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
text_decoding_method = gr.Radio(
|
155 |
+
choices=["Beam search", "Nucleus sampling"],
|
156 |
+
value="Nucleus sampling",
|
157 |
+
label="Decoding Method"
|
158 |
+
)
|
159 |
+
temperature = gr.Slider(
|
160 |
+
minimum=0.5,
|
161 |
+
maximum=1.0,
|
162 |
+
value=1.0,
|
163 |
+
label="Temperature",
|
164 |
+
elem_classes="slider-container"
|
165 |
+
)
|
166 |
+
with gr.Column():
|
167 |
+
length_penalty = gr.Slider(
|
168 |
+
minimum=-1.0,
|
169 |
+
maximum=2.0,
|
170 |
+
value=1.0,
|
171 |
+
label="Length Penalty",
|
172 |
+
elem_classes="slider-container"
|
173 |
+
)
|
174 |
+
repetition_penalty = gr.Slider(
|
175 |
+
minimum=1.0,
|
176 |
+
maximum=5.0,
|
177 |
+
value=1.5,
|
178 |
+
label="Repetition Penalty",
|
179 |
+
elem_classes="slider-container"
|
180 |
+
)
|
181 |
+
|
182 |
+
# 이벤트 핸들러 연결...
|
183 |
+
|
184 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
+
demo = create_interface()
|
188 |
+
demo.queue(max_size=10).launch()
|