SeqTex / wan /wan_t2tex_transformer_3d_extra.py
yuanze1024's picture
init space 2
6d4bcdf
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from functools import cache
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models import WanTransformer3DModel
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import get_1d_rotary_pos_embed
from diffusers.models.normalization import FP32LayerNorm
from diffusers.models.transformers.transformer_wan import \
WanTimeTextImageEmbedding
from diffusers.utils import (USE_PEFT_BACKEND, logging, scale_lora_layers,
unscale_lora_layers)
from einops import rearrange, repeat
from peft import LoraConfig
class WanT2TexAttnProcessor2_0:
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[torch.Tensor] = None,
geometry_embedding: Optional[torch.Tensor] = None,
) -> torch.Tensor:
encoder_hidden_states_img = None
if attn.add_k_proj is not None:
encoder_hidden_states_img = encoder_hidden_states[:, :257]
encoder_hidden_states = encoder_hidden_states[:, 257:]
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if geometry_embedding is not None:
# add-type geometry embedding
if True:
if isinstance(geometry_embedding, Tuple):
query = query + geometry_embedding[0]
key = key + geometry_embedding[1]
else:
query = query + geometry_embedding
key = key + geometry_embedding
else:
# mul-type geometry embedding
if isinstance(geometry_embedding, Tuple):
query = query * (1 + geometry_embedding[0])
key = key * (1 + geometry_embedding[1])
else:
query = query * (1 + geometry_embedding)
key = key * (1 + geometry_embedding)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) # [B, F*H*W, 2C] -> [B, H, F*H*W, 2C//H]
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if rotary_emb is not None:
def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor):
x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2)))
x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4)
return x_out.type_as(hidden_states)
if isinstance(rotary_emb, Tuple):
query = apply_rotary_emb(query, rotary_emb[0])
key = apply_rotary_emb(key, rotary_emb[1])
else:
query = apply_rotary_emb(query, rotary_emb)
key = apply_rotary_emb(key, rotary_emb)
# I2V task
hidden_states_img = None
if encoder_hidden_states_img is not None:
key_img = attn.add_k_proj(encoder_hidden_states_img)
key_img = attn.norm_added_k(key_img)
value_img = attn.add_v_proj(encoder_hidden_states_img)
key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
hidden_states_img = F.scaled_dot_product_attention(
query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False
)
hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3)
hidden_states_img = hidden_states_img.type_as(query)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = hidden_states.type_as(query)
if hidden_states_img is not None:
hidden_states = hidden_states + hidden_states_img
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class WanTimeTaskTextImageEmbedding(WanTimeTextImageEmbedding):
def __init__(
self,
original_model,
dim: int,
time_freq_dim: int,
time_proj_dim: int,
text_embed_dim: int,
image_embed_dim: Optional[int] = None,
randomly_init: bool = False,
):
super(WanTimeTaskTextImageEmbedding, self).__init__(dim, time_freq_dim, time_proj_dim, text_embed_dim, image_embed_dim)
if not randomly_init:
self.load_state_dict(original_model.state_dict(), strict=True)
# cond_proj = nn.Linear(512, original_model.timesteps_proj.num_channels, bias=False)
# setattr(self.time_embedder, "cond_proj", cond_proj)
def forward(
self,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
# time_cond: Optional[torch.Tensor] = None,
):
B = timestep.shape[0]
timestep = rearrange(timestep, "B F -> (B F)")
timestep = self.timesteps_proj(timestep)
timestep = rearrange(timestep, "(B F) D -> B F D", B=B)
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
timestep = timestep.to(time_embedder_dtype)
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
timestep_proj = self.time_proj(self.act_fn(temb))
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
if encoder_hidden_states_image is not None:
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
class WanRotaryPosEmbed(nn.Module):
def __init__(
self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0, addtional_qk_geo: bool = False
):
super().__init__()
if addtional_qk_geo: # to add PE to geometry embedding
attention_head_dim = attention_head_dim * 2
self.attention_head_dim = attention_head_dim
self.patch_size = patch_size
self.max_seq_len = max_seq_len
h_dim = w_dim = 2 * (attention_head_dim // 6)
t_dim = attention_head_dim - h_dim - w_dim
freqs = []
for dim in [t_dim, h_dim, w_dim]:
freq = get_1d_rotary_pos_embed(
dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64
)
freqs.append(freq)
self.freqs = torch.cat(freqs, dim=1)
def forward(self, hidden_states: torch.Tensor, uv_hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
_, _, uv_num_frames, uv_height, uv_width = uv_hidden_states.shape
p_t, p_h, p_w = self.patch_size
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
uppf, upph, uppw = uv_num_frames // p_t, uv_height // p_h, uv_width // p_w
self.freqs = self.freqs.to(hidden_states.device)
freqs = self.freqs.split_with_sizes(
[
self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6),
self.attention_head_dim // 6,
self.attention_head_dim // 6,
],
dim=1,
)
freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
uv_freqs_f = freqs[0][ppf:ppf+uppf].view(uppf, 1, 1, -1).expand(uppf, upph, uppw, -1)
uv_freqs_h = freqs[1][:upph].view(1, upph, 1, -1).expand(uppf, upph, uppw, -1)
uv_freqs_w = freqs[2][:uppw].view(1, 1, uppw, -1).expand(uppf, upph, uppw, -1)
freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1)
uv_freqs = torch.cat([uv_freqs_f, uv_freqs_h, uv_freqs_w], dim=-1).reshape(1, 1, uppf * upph * uppw, -1)
return torch.cat([freqs, uv_freqs], dim=-2)
class WanT2TexTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
ffn_dim: int,
num_heads: int,
qk_norm: str = "rms_norm_across_heads",
cross_attn_norm: bool = False,
eps: float = 1e-6,
added_kv_proj_dim: Optional[int] = None,
addtional_qk_geo: bool = False,
):
super().__init__()
# 1. Self-attention
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.attn1 = Attention(
query_dim=dim,
heads=num_heads,
kv_heads=num_heads,
dim_head=dim // num_heads,
qk_norm=qk_norm,
eps=eps,
bias=True,
cross_attention_dim=None,
out_bias=True,
processor=WanT2TexAttnProcessor2_0(),
)
# 2. Cross-attention
self.attn2 = Attention(
query_dim=dim,
heads=num_heads,
kv_heads=num_heads,
dim_head=dim // num_heads,
qk_norm=qk_norm,
eps=eps,
bias=True,
cross_attention_dim=None,
out_bias=True,
added_kv_proj_dim=added_kv_proj_dim,
added_proj_bias=True,
processor=WanT2TexAttnProcessor2_0(),
)
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
# 3. Feed-forward
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
self.geometry_caster = nn.Linear(dim, dim)
nn.init.zeros_(self.geometry_caster.weight.data)
nn.init.zeros_(self.geometry_caster.bias.data)
self.attnuv = Attention(
query_dim=dim,
heads=num_heads,
kv_heads=num_heads,
dim_head=dim // num_heads,
qk_norm=qk_norm,
eps=eps,
bias=True,
cross_attention_dim=None,
out_bias=True,
processor=WanT2TexAttnProcessor2_0(),
)
self.normuv2 = FP32LayerNorm(dim, eps, elementwise_affine=True)
self.scale_shift_table_uv = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
self.ffnuv = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
rotary_emb: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
geometry_embedding: Optional[torch.Tensor] = None,
token_shape: Optional[Tuple[int, int, int, int, int, int]] = None,
) -> torch.Tensor:
post_patch_num_frames, post_patch_height, post_patch_width, post_uv_num_frames, post_uv_height, post_uv_width = token_shape
mv_temb, uv_temb = temb[:, :post_patch_num_frames], temb[:, post_patch_num_frames:]
mv_temb = repeat(mv_temb, "B F N D -> B N (F H W) D", H=post_patch_height, W=post_patch_width)
uv_temb = repeat(uv_temb, "B F N D -> B N (F H W) D", H=post_uv_height, W=post_uv_width)
dit_ssg = rearrange(self.scale_shift_table, "1 N D -> 1 N 1 D") + mv_temb.float()
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = torch.unbind(dit_ssg, dim=1)
dit_ssg_uv = rearrange(self.scale_shift_table_uv, "1 N D -> 1 N 1 D") + uv_temb.float()
shift_msa_uv, scale_msa_uv, gate_msa_uv, c_shift_msa_uv, c_scale_msa_uv, c_gate_msa_uv = torch.unbind(dit_ssg_uv, dim=1)
geometry_embedding = self.geometry_caster(geometry_embedding)
n_mv, n_uv = post_patch_num_frames * post_patch_height * post_patch_width, post_uv_num_frames * post_uv_height * post_uv_width
assert hidden_states.shape[1] == n_mv + n_uv, f"hidden_states shape {hidden_states.shape} is not equal to {n_mv + n_uv}"
mv_hidden_states, uv_hidden_states = hidden_states[:, :n_mv], hidden_states[:, n_mv:]
# 1. Self-attention
mv_norm_hidden_states = (self.norm1(mv_hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(mv_hidden_states)
uv_norm_hidden_states = (self.norm1(uv_hidden_states.float()) * (1 + scale_msa_uv) + shift_msa_uv).type_as(uv_hidden_states)
mv_attn_output = self.attn1(hidden_states=mv_norm_hidden_states, rotary_emb=rotary_emb[:, :, :n_mv], attention_mask=attn_bias, geometry_embedding=geometry_embedding[:, :n_mv])
mv_hidden_states = (mv_hidden_states.float() + mv_attn_output * gate_msa).type_as(mv_hidden_states)
uv_attn_output = self.attnuv(hidden_states=uv_norm_hidden_states, encoder_hidden_states=torch.cat([mv_hidden_states, uv_norm_hidden_states], dim=1),
rotary_emb=(rotary_emb[:, :, n_mv:], rotary_emb), geometry_embedding=(geometry_embedding[:, n_mv:], geometry_embedding))
uv_hidden_states = (uv_hidden_states.float() + uv_attn_output * gate_msa_uv).type_as(uv_hidden_states)
# 2. Cross-attention
mv_norm_hidden_states = self.norm2(mv_hidden_states.float()).type_as(mv_hidden_states)
uv_norm_hidden_states = self.normuv2(uv_hidden_states.float()).type_as(uv_hidden_states)
attn_output = self.attn2(hidden_states=torch.cat([mv_norm_hidden_states, uv_norm_hidden_states], dim=1), encoder_hidden_states=encoder_hidden_states)
mv_attn_output, uv_attn_output = attn_output[:, :n_mv], attn_output[:, n_mv:]
mv_hidden_states.add_(mv_attn_output)
uv_hidden_states.add_(uv_attn_output)
# 3. Feed-forward
mv_norm_hidden_states = (self.norm3(mv_hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
mv_hidden_states
)
uv_norm_hidden_states = (self.norm3(uv_hidden_states.float()) * (1 + c_scale_msa_uv) + c_shift_msa_uv).type_as(
uv_hidden_states
)
ff_output = self.ffn(mv_norm_hidden_states)
mv_hidden_states = (mv_hidden_states.float() + ff_output.float() * c_gate_msa).type_as(mv_hidden_states)
ff_output_uv = self.ffnuv(uv_norm_hidden_states)
uv_hidden_states = (uv_hidden_states.float() + ff_output_uv.float() * c_gate_msa_uv).type_as(uv_hidden_states)
hidden_states = torch.cat([mv_hidden_states, uv_hidden_states], dim=1)
return hidden_states
class WanT2TexTransformer3DModel(WanTransformer3DModel):
"""
3D Transformer model for T2Tex.
"""
def __init__(self,
patch_size: Tuple[int] = (1, 2, 2),
num_attention_heads: int = 40,
attention_head_dim: int = 128,
in_channels: int = 16,
out_channels: int = 16,
text_dim: int = 4096,
freq_dim: int = 256,
ffn_dim: int = 13824,
num_layers: int = 40,
cross_attn_norm: bool = True,
qk_norm: Optional[str] = "rms_norm_across_heads",
eps: float = 1e-6,
image_dim: Optional[int] = None,
added_kv_proj_dim: Optional[int] = None,
rope_max_seq_len: int = 1024,
**kwargs
):
super(WanT2TexTransformer3DModel, self).__init__(
patch_size=patch_size,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
in_channels=in_channels,
out_channels=out_channels,
text_dim=text_dim,
freq_dim=freq_dim,
ffn_dim=ffn_dim,
num_layers=num_layers,
cross_attn_norm=cross_attn_norm,
qk_norm=qk_norm,
eps=eps,
image_dim=image_dim,
added_kv_proj_dim=added_kv_proj_dim,
rope_max_seq_len=rope_max_seq_len
)
# 1. Patch & position embedding
self.rope = WanRotaryPosEmbed(self.rope.attention_head_dim, self.rope.patch_size, self.rope.max_seq_len)
self.norm_patch_embedding = copy.deepcopy(self.patch_embedding)
self.pos_patch_embedding = copy.deepcopy(self.patch_embedding)
# 2. Condition embeddings
inner_dim = num_attention_heads * attention_head_dim
self.condition_embedder = WanTimeTaskTextImageEmbedding(
original_model=self.condition_embedder,
dim=inner_dim,
time_freq_dim=freq_dim,
time_proj_dim=inner_dim * 6,
text_embed_dim=text_dim,
image_embed_dim=image_dim,
)
# 3. Transformer blocks
self.num_attention_heads = num_attention_heads
block = WanT2TexTransformerBlock(
inner_dim,
ffn_dim,
num_attention_heads,
qk_norm,
cross_attn_norm,
eps,
added_kv_proj_dim,
)
self.blocks = None
self.blocks = nn.ModuleList(
[
copy.deepcopy(block)
for _ in range(num_layers)
]
)
self.scale_shift_table_uv = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
# 4. Auto-configure LoRA adapter for SeqTex
self.configure_lora_adapter()
def configure_lora_adapter(self, lora_rank: int = 128, lora_alpha: int = 64):
"""
Configure LoRA adapter with custom settings or auto-configuration.
Args:
lora_rank (int, optional): LoRA rank parameter, default (128)
lora_alpha (int, optional): LoRA alpha parameter, default (64)
"""
# Get parameters from args, environment variables, or defaults
target_modules = [
"attn1.to_q", "attn1.to_k", "attn1.to_v",
"attn1.to_out.0", "attn1.to_out.2",
"ffn.net.0.proj", "ffn.net.2"
]
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights=True,
target_modules=target_modules,
)
self.add_adapter(lora_config)
@cache
def get_attention_bias(self, mv_length, uv_length):
total_len = mv_length + uv_length
attention_mask = torch.ones((total_len, total_len), dtype=torch.bool)
uv_start = mv_length
attention_mask[:uv_start, uv_start:] = False
attention_mask = repeat(attention_mask, "s l -> 1 h s l", h=self.num_attention_heads)
attention_bias = torch.ones_like(attention_mask)
attention_bias.masked_fill_(attention_mask.logical_not(), float("-inf"))
attention_bias = attention_bias.to("cuda").contiguous()
return attention_bias
def forward(
self,
hidden_states: Tuple[torch.Tensor, torch.Tensor],
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
# task_cond: Optional[torch.Tensor] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
use_qk_geometry: Optional[bool] = False,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
raise NotImplementedError()
assert timestep.ndim == 2, "Use Diffusion Forcing to set seperate timestep for each frame."
mv_hidden_states, uv_hidden_states = hidden_states
batch_size, num_channels, num_frames, height, width = mv_hidden_states.shape
_, _, uv_num_frames, uv_height, uv_width = uv_hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p_h
post_patch_width = width // p_w
post_uv_num_frames = uv_num_frames // p_t
post_uv_height = uv_height // p_h
post_uv_width = uv_width // p_w
rotary_emb = self.rope(mv_hidden_states, uv_hidden_states)
# Patchify
mv_rgb_hidden_states, mv_pos_hidden_states, mv_norm_hidden_states = torch.chunk(mv_hidden_states, 3, dim=1)
uv_rgb_hidden_states, uv_pos_hidden_states, uv_norm_hidden_states = torch.chunk(uv_hidden_states, 3, dim=1)
mv_geometry_embedding = self.pos_patch_embedding(mv_pos_hidden_states) + self.norm_patch_embedding(mv_norm_hidden_states)
uv_geometry_embedding = self.pos_patch_embedding(uv_pos_hidden_states) + self.norm_patch_embedding(uv_norm_hidden_states)
mv_hidden_states = self.patch_embedding(mv_rgb_hidden_states)
uv_hidden_states = self.patch_embedding(uv_rgb_hidden_states)
if use_qk_geometry:
mv_geometry_embedding = mv_geometry_embedding.flatten(2).transpose(1, 2)
uv_geometry_embedding = uv_geometry_embedding.flatten(2).transpose(1, 2) # [B, F*H*W, C]
geometry_embedding = torch.cat([mv_geometry_embedding, uv_geometry_embedding], dim=1)
else:
raise NotImplementedError("please set use_qk_geometry to True")
# geometry_embedding = None
# mv_hidden_states = mv_hidden_states + mv_geometry_embedding
# uv_hidden_states = uv_hidden_states + uv_geometry_embedding
mv_hidden_states = mv_hidden_states.flatten(2).transpose(1, 2)
uv_hidden_states = uv_hidden_states.flatten(2).transpose(1, 2) # [B, F*H*W, C]
hidden_states = torch.cat([mv_hidden_states, uv_hidden_states], dim=1) # [B, F*H*W, C]
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
timestep, encoder_hidden_states, encoder_hidden_states_image
)
# temb [B, F, 6*D], timestep_proj [B, F, 6*D], used to be [B, 6*D]
timestep_proj = timestep_proj.unflatten(-1, (6, -1)) # [B, F, 6*D] -> [B, F, 6, D]
if encoder_hidden_states_image is not None:
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
attn_bias = None
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.blocks:
hidden_states = self._gradient_checkpointing_func(
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb,
attn_bias, geometry_embedding, (post_patch_num_frames, post_patch_height, post_patch_width, post_uv_num_frames, post_uv_height, post_uv_width)
)
else:
for block in self.blocks:
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb,
attn_bias=attn_bias, geometry_embedding=geometry_embedding,
token_shape=(post_patch_num_frames, post_patch_height, post_patch_width, post_uv_num_frames, post_uv_height, post_uv_width))
# 5. Output norm, projection & unpatchify
# [B, 2, D] chunk into [B, 1, D] and [B, 1, D], D is 1536
inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
mv_temb, uv_temb = temb[:, :post_patch_num_frames], temb[:, post_patch_num_frames:]
mv_temb = repeat(mv_temb, "B F D -> B 1 (F H W) D", H=post_patch_height, W=post_patch_width)
uv_temb = repeat(uv_temb, "B F D -> B 1 (F H W) D", H=post_uv_height, W=post_uv_width)
shift, scale = (self.scale_shift_table.view(1, 2, 1, inner_dim) + mv_temb).chunk(2, dim=1)
shift_uv, scale_uv = (self.scale_shift_table_uv.view(1, 2, 1, inner_dim) + uv_temb).chunk(2, dim=1)
# Move the shift and scale tensors to the same device as hidden_states.
# When using multi-GPU inference via accelerate these will be on the
# first device rather than the last device, which hidden_states ends up
# on.
shift = shift.squeeze(1).to(hidden_states.device)
scale = scale.squeeze(1).to(hidden_states.device)
shift_uv = shift_uv.squeeze(1).to(hidden_states.device)
scale_uv = scale_uv.squeeze(1).to(hidden_states.device)
# Unpatchify
uv_token_length = post_uv_num_frames * post_uv_height * post_uv_width
mv_token_length = post_patch_num_frames * post_patch_height * post_patch_width
assert uv_token_length + mv_token_length == hidden_states.shape[1]
uv_hidden_states = hidden_states[:, mv_token_length:]
mv_hidden_states = hidden_states[:, :mv_token_length]
mv_hidden_states = (self.norm_out(mv_hidden_states.float()) * (1 + scale) + shift).type_as(mv_hidden_states)
uv_hidden_states = (self.norm_out(uv_hidden_states.float()) * (1 + scale_uv) + shift_uv).type_as(uv_hidden_states)
mv_hidden_states = self.proj_out(mv_hidden_states)
uv_hidden_states = self.proj_out(uv_hidden_states)
mv_hidden_states = mv_hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
)
mv_hidden_states = mv_hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
mv_output = mv_hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
uv_hidden_states = uv_hidden_states.reshape(
batch_size, post_uv_num_frames, post_uv_height, post_uv_width, p_t, p_h, p_w, -1
)
uv_hidden_states = uv_hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
uv_output = uv_hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
return ((mv_output, uv_output),)