# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from functools import cache from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from diffusers.models import WanTransformer3DModel from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import get_1d_rotary_pos_embed from diffusers.models.normalization import FP32LayerNorm from diffusers.models.transformers.transformer_wan import \ WanTimeTextImageEmbedding from diffusers.utils import (USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers) from einops import rearrange, repeat from peft import LoraConfig class WanT2TexAttnProcessor2_0: def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, rotary_emb: Optional[torch.Tensor] = None, geometry_embedding: Optional[torch.Tensor] = None, ) -> torch.Tensor: encoder_hidden_states_img = None if attn.add_k_proj is not None: encoder_hidden_states_img = encoder_hidden_states[:, :257] encoder_hidden_states = encoder_hidden_states[:, 257:] if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if geometry_embedding is not None: # add-type geometry embedding if True: if isinstance(geometry_embedding, Tuple): query = query + geometry_embedding[0] key = key + geometry_embedding[1] else: query = query + geometry_embedding key = key + geometry_embedding else: # mul-type geometry embedding if isinstance(geometry_embedding, Tuple): query = query * (1 + geometry_embedding[0]) key = key * (1 + geometry_embedding[1]) else: query = query * (1 + geometry_embedding) key = key * (1 + geometry_embedding) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) # [B, F*H*W, 2C] -> [B, H, F*H*W, 2C//H] key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) if rotary_emb is not None: def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2))) x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4) return x_out.type_as(hidden_states) if isinstance(rotary_emb, Tuple): query = apply_rotary_emb(query, rotary_emb[0]) key = apply_rotary_emb(key, rotary_emb[1]) else: query = apply_rotary_emb(query, rotary_emb) key = apply_rotary_emb(key, rotary_emb) # I2V task hidden_states_img = None if encoder_hidden_states_img is not None: key_img = attn.add_k_proj(encoder_hidden_states_img) key_img = attn.norm_added_k(key_img) value_img = attn.add_v_proj(encoder_hidden_states_img) key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) hidden_states_img = F.scaled_dot_product_attention( query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False ) hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3) hidden_states_img = hidden_states_img.type_as(query) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.type_as(query) if hidden_states_img is not None: hidden_states = hidden_states + hidden_states_img hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) return hidden_states class WanTimeTaskTextImageEmbedding(WanTimeTextImageEmbedding): def __init__( self, original_model, dim: int, time_freq_dim: int, time_proj_dim: int, text_embed_dim: int, image_embed_dim: Optional[int] = None, randomly_init: bool = False, ): super(WanTimeTaskTextImageEmbedding, self).__init__(dim, time_freq_dim, time_proj_dim, text_embed_dim, image_embed_dim) if not randomly_init: self.load_state_dict(original_model.state_dict(), strict=True) # cond_proj = nn.Linear(512, original_model.timesteps_proj.num_channels, bias=False) # setattr(self.time_embedder, "cond_proj", cond_proj) def forward( self, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_hidden_states_image: Optional[torch.Tensor] = None, # time_cond: Optional[torch.Tensor] = None, ): B = timestep.shape[0] timestep = rearrange(timestep, "B F -> (B F)") timestep = self.timesteps_proj(timestep) timestep = rearrange(timestep, "(B F) D -> B F D", B=B) time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8: timestep = timestep.to(time_embedder_dtype) temb = self.time_embedder(timestep).type_as(encoder_hidden_states) timestep_proj = self.time_proj(self.act_fn(temb)) encoder_hidden_states = self.text_embedder(encoder_hidden_states) if encoder_hidden_states_image is not None: encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image) return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image class WanRotaryPosEmbed(nn.Module): def __init__( self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0, addtional_qk_geo: bool = False ): super().__init__() if addtional_qk_geo: # to add PE to geometry embedding attention_head_dim = attention_head_dim * 2 self.attention_head_dim = attention_head_dim self.patch_size = patch_size self.max_seq_len = max_seq_len h_dim = w_dim = 2 * (attention_head_dim // 6) t_dim = attention_head_dim - h_dim - w_dim freqs = [] for dim in [t_dim, h_dim, w_dim]: freq = get_1d_rotary_pos_embed( dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64 ) freqs.append(freq) self.freqs = torch.cat(freqs, dim=1) def forward(self, hidden_states: torch.Tensor, uv_hidden_states: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = hidden_states.shape _, _, uv_num_frames, uv_height, uv_width = uv_hidden_states.shape p_t, p_h, p_w = self.patch_size ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w uppf, upph, uppw = uv_num_frames // p_t, uv_height // p_h, uv_width // p_w self.freqs = self.freqs.to(hidden_states.device) freqs = self.freqs.split_with_sizes( [ self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6), self.attention_head_dim // 6, self.attention_head_dim // 6, ], dim=1, ) freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1) freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1) freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1) uv_freqs_f = freqs[0][ppf:ppf+uppf].view(uppf, 1, 1, -1).expand(uppf, upph, uppw, -1) uv_freqs_h = freqs[1][:upph].view(1, upph, 1, -1).expand(uppf, upph, uppw, -1) uv_freqs_w = freqs[2][:uppw].view(1, 1, uppw, -1).expand(uppf, upph, uppw, -1) freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1) uv_freqs = torch.cat([uv_freqs_f, uv_freqs_h, uv_freqs_w], dim=-1).reshape(1, 1, uppf * upph * uppw, -1) return torch.cat([freqs, uv_freqs], dim=-2) class WanT2TexTransformerBlock(nn.Module): def __init__( self, dim: int, ffn_dim: int, num_heads: int, qk_norm: str = "rms_norm_across_heads", cross_attn_norm: bool = False, eps: float = 1e-6, added_kv_proj_dim: Optional[int] = None, addtional_qk_geo: bool = False, ): super().__init__() # 1. Self-attention self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False) self.attn1 = Attention( query_dim=dim, heads=num_heads, kv_heads=num_heads, dim_head=dim // num_heads, qk_norm=qk_norm, eps=eps, bias=True, cross_attention_dim=None, out_bias=True, processor=WanT2TexAttnProcessor2_0(), ) # 2. Cross-attention self.attn2 = Attention( query_dim=dim, heads=num_heads, kv_heads=num_heads, dim_head=dim // num_heads, qk_norm=qk_norm, eps=eps, bias=True, cross_attention_dim=None, out_bias=True, added_kv_proj_dim=added_kv_proj_dim, added_proj_bias=True, processor=WanT2TexAttnProcessor2_0(), ) self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity() # 3. Feed-forward self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate") self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False) self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) self.geometry_caster = nn.Linear(dim, dim) nn.init.zeros_(self.geometry_caster.weight.data) nn.init.zeros_(self.geometry_caster.bias.data) self.attnuv = Attention( query_dim=dim, heads=num_heads, kv_heads=num_heads, dim_head=dim // num_heads, qk_norm=qk_norm, eps=eps, bias=True, cross_attention_dim=None, out_bias=True, processor=WanT2TexAttnProcessor2_0(), ) self.normuv2 = FP32LayerNorm(dim, eps, elementwise_affine=True) self.scale_shift_table_uv = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) self.ffnuv = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, rotary_emb: torch.Tensor, attn_bias: Optional[torch.Tensor] = None, geometry_embedding: Optional[torch.Tensor] = None, token_shape: Optional[Tuple[int, int, int, int, int, int]] = None, ) -> torch.Tensor: post_patch_num_frames, post_patch_height, post_patch_width, post_uv_num_frames, post_uv_height, post_uv_width = token_shape mv_temb, uv_temb = temb[:, :post_patch_num_frames], temb[:, post_patch_num_frames:] mv_temb = repeat(mv_temb, "B F N D -> B N (F H W) D", H=post_patch_height, W=post_patch_width) uv_temb = repeat(uv_temb, "B F N D -> B N (F H W) D", H=post_uv_height, W=post_uv_width) dit_ssg = rearrange(self.scale_shift_table, "1 N D -> 1 N 1 D") + mv_temb.float() shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = torch.unbind(dit_ssg, dim=1) dit_ssg_uv = rearrange(self.scale_shift_table_uv, "1 N D -> 1 N 1 D") + uv_temb.float() shift_msa_uv, scale_msa_uv, gate_msa_uv, c_shift_msa_uv, c_scale_msa_uv, c_gate_msa_uv = torch.unbind(dit_ssg_uv, dim=1) geometry_embedding = self.geometry_caster(geometry_embedding) n_mv, n_uv = post_patch_num_frames * post_patch_height * post_patch_width, post_uv_num_frames * post_uv_height * post_uv_width assert hidden_states.shape[1] == n_mv + n_uv, f"hidden_states shape {hidden_states.shape} is not equal to {n_mv + n_uv}" mv_hidden_states, uv_hidden_states = hidden_states[:, :n_mv], hidden_states[:, n_mv:] # 1. Self-attention mv_norm_hidden_states = (self.norm1(mv_hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(mv_hidden_states) uv_norm_hidden_states = (self.norm1(uv_hidden_states.float()) * (1 + scale_msa_uv) + shift_msa_uv).type_as(uv_hidden_states) mv_attn_output = self.attn1(hidden_states=mv_norm_hidden_states, rotary_emb=rotary_emb[:, :, :n_mv], attention_mask=attn_bias, geometry_embedding=geometry_embedding[:, :n_mv]) mv_hidden_states = (mv_hidden_states.float() + mv_attn_output * gate_msa).type_as(mv_hidden_states) uv_attn_output = self.attnuv(hidden_states=uv_norm_hidden_states, encoder_hidden_states=torch.cat([mv_hidden_states, uv_norm_hidden_states], dim=1), rotary_emb=(rotary_emb[:, :, n_mv:], rotary_emb), geometry_embedding=(geometry_embedding[:, n_mv:], geometry_embedding)) uv_hidden_states = (uv_hidden_states.float() + uv_attn_output * gate_msa_uv).type_as(uv_hidden_states) # 2. Cross-attention mv_norm_hidden_states = self.norm2(mv_hidden_states.float()).type_as(mv_hidden_states) uv_norm_hidden_states = self.normuv2(uv_hidden_states.float()).type_as(uv_hidden_states) attn_output = self.attn2(hidden_states=torch.cat([mv_norm_hidden_states, uv_norm_hidden_states], dim=1), encoder_hidden_states=encoder_hidden_states) mv_attn_output, uv_attn_output = attn_output[:, :n_mv], attn_output[:, n_mv:] mv_hidden_states.add_(mv_attn_output) uv_hidden_states.add_(uv_attn_output) # 3. Feed-forward mv_norm_hidden_states = (self.norm3(mv_hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as( mv_hidden_states ) uv_norm_hidden_states = (self.norm3(uv_hidden_states.float()) * (1 + c_scale_msa_uv) + c_shift_msa_uv).type_as( uv_hidden_states ) ff_output = self.ffn(mv_norm_hidden_states) mv_hidden_states = (mv_hidden_states.float() + ff_output.float() * c_gate_msa).type_as(mv_hidden_states) ff_output_uv = self.ffnuv(uv_norm_hidden_states) uv_hidden_states = (uv_hidden_states.float() + ff_output_uv.float() * c_gate_msa_uv).type_as(uv_hidden_states) hidden_states = torch.cat([mv_hidden_states, uv_hidden_states], dim=1) return hidden_states class WanT2TexTransformer3DModel(WanTransformer3DModel): """ 3D Transformer model for T2Tex. """ def __init__(self, patch_size: Tuple[int] = (1, 2, 2), num_attention_heads: int = 40, attention_head_dim: int = 128, in_channels: int = 16, out_channels: int = 16, text_dim: int = 4096, freq_dim: int = 256, ffn_dim: int = 13824, num_layers: int = 40, cross_attn_norm: bool = True, qk_norm: Optional[str] = "rms_norm_across_heads", eps: float = 1e-6, image_dim: Optional[int] = None, added_kv_proj_dim: Optional[int] = None, rope_max_seq_len: int = 1024, **kwargs ): super(WanT2TexTransformer3DModel, self).__init__( patch_size=patch_size, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, in_channels=in_channels, out_channels=out_channels, text_dim=text_dim, freq_dim=freq_dim, ffn_dim=ffn_dim, num_layers=num_layers, cross_attn_norm=cross_attn_norm, qk_norm=qk_norm, eps=eps, image_dim=image_dim, added_kv_proj_dim=added_kv_proj_dim, rope_max_seq_len=rope_max_seq_len ) # 1. Patch & position embedding self.rope = WanRotaryPosEmbed(self.rope.attention_head_dim, self.rope.patch_size, self.rope.max_seq_len) self.norm_patch_embedding = copy.deepcopy(self.patch_embedding) self.pos_patch_embedding = copy.deepcopy(self.patch_embedding) # 2. Condition embeddings inner_dim = num_attention_heads * attention_head_dim self.condition_embedder = WanTimeTaskTextImageEmbedding( original_model=self.condition_embedder, dim=inner_dim, time_freq_dim=freq_dim, time_proj_dim=inner_dim * 6, text_embed_dim=text_dim, image_embed_dim=image_dim, ) # 3. Transformer blocks self.num_attention_heads = num_attention_heads block = WanT2TexTransformerBlock( inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim, ) self.blocks = None self.blocks = nn.ModuleList( [ copy.deepcopy(block) for _ in range(num_layers) ] ) self.scale_shift_table_uv = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5) # 4. Auto-configure LoRA adapter for SeqTex self.configure_lora_adapter() def configure_lora_adapter(self, lora_rank: int = 128, lora_alpha: int = 64): """ Configure LoRA adapter with custom settings or auto-configuration. Args: lora_rank (int, optional): LoRA rank parameter, default (128) lora_alpha (int, optional): LoRA alpha parameter, default (64) """ # Get parameters from args, environment variables, or defaults target_modules = [ "attn1.to_q", "attn1.to_k", "attn1.to_v", "attn1.to_out.0", "attn1.to_out.2", "ffn.net.0.proj", "ffn.net.2" ] lora_config = LoraConfig( r=lora_rank, lora_alpha=lora_alpha, init_lora_weights=True, target_modules=target_modules, ) self.add_adapter(lora_config) @cache def get_attention_bias(self, mv_length, uv_length): total_len = mv_length + uv_length attention_mask = torch.ones((total_len, total_len), dtype=torch.bool) uv_start = mv_length attention_mask[:uv_start, uv_start:] = False attention_mask = repeat(attention_mask, "s l -> 1 h s l", h=self.num_attention_heads) attention_bias = torch.ones_like(attention_mask) attention_bias.masked_fill_(attention_mask.logical_not(), float("-inf")) attention_bias = attention_bias.to("cuda").contiguous() return attention_bias def forward( self, hidden_states: Tuple[torch.Tensor, torch.Tensor], timestep: torch.LongTensor, encoder_hidden_states: torch.Tensor, encoder_hidden_states_image: Optional[torch.Tensor] = None, # task_cond: Optional[torch.Tensor] = None, return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, use_qk_geometry: Optional[bool] = False, ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: raise NotImplementedError() assert timestep.ndim == 2, "Use Diffusion Forcing to set seperate timestep for each frame." mv_hidden_states, uv_hidden_states = hidden_states batch_size, num_channels, num_frames, height, width = mv_hidden_states.shape _, _, uv_num_frames, uv_height, uv_width = uv_hidden_states.shape p_t, p_h, p_w = self.config.patch_size post_patch_num_frames = num_frames // p_t post_patch_height = height // p_h post_patch_width = width // p_w post_uv_num_frames = uv_num_frames // p_t post_uv_height = uv_height // p_h post_uv_width = uv_width // p_w rotary_emb = self.rope(mv_hidden_states, uv_hidden_states) # Patchify mv_rgb_hidden_states, mv_pos_hidden_states, mv_norm_hidden_states = torch.chunk(mv_hidden_states, 3, dim=1) uv_rgb_hidden_states, uv_pos_hidden_states, uv_norm_hidden_states = torch.chunk(uv_hidden_states, 3, dim=1) mv_geometry_embedding = self.pos_patch_embedding(mv_pos_hidden_states) + self.norm_patch_embedding(mv_norm_hidden_states) uv_geometry_embedding = self.pos_patch_embedding(uv_pos_hidden_states) + self.norm_patch_embedding(uv_norm_hidden_states) mv_hidden_states = self.patch_embedding(mv_rgb_hidden_states) uv_hidden_states = self.patch_embedding(uv_rgb_hidden_states) if use_qk_geometry: mv_geometry_embedding = mv_geometry_embedding.flatten(2).transpose(1, 2) uv_geometry_embedding = uv_geometry_embedding.flatten(2).transpose(1, 2) # [B, F*H*W, C] geometry_embedding = torch.cat([mv_geometry_embedding, uv_geometry_embedding], dim=1) else: raise NotImplementedError("please set use_qk_geometry to True") # geometry_embedding = None # mv_hidden_states = mv_hidden_states + mv_geometry_embedding # uv_hidden_states = uv_hidden_states + uv_geometry_embedding mv_hidden_states = mv_hidden_states.flatten(2).transpose(1, 2) uv_hidden_states = uv_hidden_states.flatten(2).transpose(1, 2) # [B, F*H*W, C] hidden_states = torch.cat([mv_hidden_states, uv_hidden_states], dim=1) # [B, F*H*W, C] temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder( timestep, encoder_hidden_states, encoder_hidden_states_image ) # temb [B, F, 6*D], timestep_proj [B, F, 6*D], used to be [B, 6*D] timestep_proj = timestep_proj.unflatten(-1, (6, -1)) # [B, F, 6*D] -> [B, F, 6, D] if encoder_hidden_states_image is not None: encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1) attn_bias = None # 4. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: for block in self.blocks: hidden_states = self._gradient_checkpointing_func( block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb, attn_bias, geometry_embedding, (post_patch_num_frames, post_patch_height, post_patch_width, post_uv_num_frames, post_uv_height, post_uv_width) ) else: for block in self.blocks: hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb, attn_bias=attn_bias, geometry_embedding=geometry_embedding, token_shape=(post_patch_num_frames, post_patch_height, post_patch_width, post_uv_num_frames, post_uv_height, post_uv_width)) # 5. Output norm, projection & unpatchify # [B, 2, D] chunk into [B, 1, D] and [B, 1, D], D is 1536 inner_dim = self.config.num_attention_heads * self.config.attention_head_dim mv_temb, uv_temb = temb[:, :post_patch_num_frames], temb[:, post_patch_num_frames:] mv_temb = repeat(mv_temb, "B F D -> B 1 (F H W) D", H=post_patch_height, W=post_patch_width) uv_temb = repeat(uv_temb, "B F D -> B 1 (F H W) D", H=post_uv_height, W=post_uv_width) shift, scale = (self.scale_shift_table.view(1, 2, 1, inner_dim) + mv_temb).chunk(2, dim=1) shift_uv, scale_uv = (self.scale_shift_table_uv.view(1, 2, 1, inner_dim) + uv_temb).chunk(2, dim=1) # Move the shift and scale tensors to the same device as hidden_states. # When using multi-GPU inference via accelerate these will be on the # first device rather than the last device, which hidden_states ends up # on. shift = shift.squeeze(1).to(hidden_states.device) scale = scale.squeeze(1).to(hidden_states.device) shift_uv = shift_uv.squeeze(1).to(hidden_states.device) scale_uv = scale_uv.squeeze(1).to(hidden_states.device) # Unpatchify uv_token_length = post_uv_num_frames * post_uv_height * post_uv_width mv_token_length = post_patch_num_frames * post_patch_height * post_patch_width assert uv_token_length + mv_token_length == hidden_states.shape[1] uv_hidden_states = hidden_states[:, mv_token_length:] mv_hidden_states = hidden_states[:, :mv_token_length] mv_hidden_states = (self.norm_out(mv_hidden_states.float()) * (1 + scale) + shift).type_as(mv_hidden_states) uv_hidden_states = (self.norm_out(uv_hidden_states.float()) * (1 + scale_uv) + shift_uv).type_as(uv_hidden_states) mv_hidden_states = self.proj_out(mv_hidden_states) uv_hidden_states = self.proj_out(uv_hidden_states) mv_hidden_states = mv_hidden_states.reshape( batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1 ) mv_hidden_states = mv_hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) mv_output = mv_hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) uv_hidden_states = uv_hidden_states.reshape( batch_size, post_uv_num_frames, post_uv_height, post_uv_width, p_t, p_h, p_w, -1 ) uv_hidden_states = uv_hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) uv_output = uv_hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) return ((mv_output, uv_output),)