File size: 8,355 Bytes
f89a9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d04f7
f89a9bf
 
 
 
81d04f7
f89a9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import spaces
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
import trimesh
import random
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from huggingface_hub import hf_hub_download, snapshot_download, login
import subprocess
import shutil


DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16

print("DEVICE: ", DEVICE)

DEFAULT_PART_FACE_NUMBER = 10000
MAX_SEED = np.iinfo(np.int32).max
HOLOPART_REPO_URL = "https://github.com/VAST-AI-Research/HoloPart"
HOLOPART_PRETRAINED_MODEL = "checkpoints/HoloPart"

TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_DIR, exist_ok=True)

HOLOPART_CODE_DIR = "./holopart"
if not os.path.exists(HOLOPART_REPO_URL):
    os.system(f"git clone {HOLOPART_REPO_URL} {HOLOPART_CODE_DIR}")

import sys
sys.path.append(HOLOPART_CODE_DIR)
sys.path.append(os.path.join(HOLOPART_CODE_DIR, "scripts"))

EXAMPLES = [
    ["./holopart/assets/example_data/000.glb", "./holopart/assets/example_data/000.png"],
    ["./holopart/assets/example_data/001.glb", "./holopart/assets/example_data/001.png"],
    ["./holopart/assets/example_data/002.glb", "./holopart/assets/example_data/002.png"],
    ["./holopart/assets/example_data/003.glb", "./holopart/assets/example_data/003.png"],
]

HEADER = """
# 🔮 Decompose a 3D shape into complete parts with [HoloPart](https://github.com/VAST-AI-Research/HoloPart).
### Step 1: Prepare Your Segmented Mesh
Upload a mesh with part segmentation. We recommend using these segmentation tools:
- [SAMPart3D](https://github.com/Pointcept/SAMPart3D)
- [SAMesh](https://github.com/gtangg12/samesh)
For a mesh file `mesh.glb` and corresponding face mask `mask.npy`, prepare your input using this Python code:
```python
import trimesh
import numpy as np
mesh = trimesh.load("mesh.glb", force="mesh")
mask_npy = np.load("mask.npy")
mesh_parts = []
for part_id in np.unique(mask_npy):
    mesh_part = mesh.submesh([mask_npy == part_id], append=True)
    mesh_parts.append(mesh_part)
mesh_parts = trimesh.Scene(mesh_parts).export("input_mesh.glb")
```
The resulting **input_mesh.glb** is your prepared input for HoloPart.
### Step 2: Click the Decompose Parts button to begin the decomposition process.
"""

from inference_holopart import prepare_data, run_holopart
from holopart.pipelines.pipeline_holopart import HoloPartPipeline

snapshot_download("VAST-AI/HoloPart", local_dir=HOLOPART_PRETRAINED_MODEL)
holopart_pipe = HoloPartPipeline.from_pretrained(HOLOPART_PRETRAINED_MODEL).to(DEVICE, DTYPE)

def start_session(req: gr.Request):
    save_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(save_dir, exist_ok=True)
    print("start session, mkdir", save_dir)

def end_session(req: gr.Request):
    save_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(save_dir)

def get_random_hex():
    random_bytes = os.urandom(8)
    random_hex = random_bytes.hex()
    return random_hex

def get_random_seed(randomize_seed, seed):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def explode_mesh(mesh: trimesh.Scene, explode_factor: float = 0.5):
    center = mesh.centroid
    exploded_mesh = trimesh.Scene()
    for geometry_name, geometry in mesh.geometry.items():
        transform = mesh.graph[geometry_name][0]
        vertices_global = trimesh.transformations.transform_points(
            geometry.vertices, transform)
        part_center = np.mean(vertices_global, axis=0)
        direction = part_center - center
        direction_length = np.linalg.norm(direction)
        if direction_length > 0:
            direction = direction / direction_length
        displacement = direction * explode_factor
        new_transform = np.copy(transform)
        new_transform[:3, 3] += displacement
        exploded_mesh.add_geometry(geometry, transform=new_transform, geom_name=geometry_name)
    return exploded_mesh


@spaces.GPU(duration=600)
def run_full(data_path, seed=42, num_inference_steps=25, guidance_scale=3.5):

    batch_size = 30
    parts_data = prepare_data(data_path)

    part_scene = run_holopart(
        holopart_pipe,
        batch=parts_data,
        batch_size=batch_size,
        seed=seed,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_chunks=1000000,
    )
    print("mesh extraction done")
    
    save_dir = os.path.join(TMP_DIR, "examples")
    os.makedirs(save_dir, exist_ok=True)
    mesh_path = os.path.join(save_dir, f"holorpart_{get_random_hex()}.glb")
    part_scene.export(mesh_path)
    print("save to ", mesh_path)
    exploded_mesh = explode_mesh(part_scene, 0.7)
    exploded_mesh_path = os.path.join(save_dir, f"holorpart_exploded_{get_random_hex()}.glb")
    exploded_mesh.export(exploded_mesh_path)

    torch.cuda.empty_cache()

    return mesh_path, exploded_mesh_path


@spaces.GPU(duration=600)
def run_example(data_path: str, example_image_path, seed=42, num_inference_steps=25, guidance_scale=3.5):

    batch_size = 30
    parts_data = prepare_data(data_path)

    part_scene = run_holopart(
        holopart_pipe,
        batch=parts_data,
        batch_size=batch_size,
        seed=seed,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_chunks=1000000,
    )
    print("mesh extraction done")

    
    save_dir = os.path.join(TMP_DIR, "examples")
    os.makedirs(save_dir, exist_ok=True)
    mesh_path = os.path.join(save_dir, f"holorpart_{get_random_hex()}.glb")
    part_scene.export(mesh_path)
    print("save to ", mesh_path)
    exploded_mesh = explode_mesh(part_scene, 0.5)
    exploded_mesh_path = os.path.join(save_dir, f"holorpart_exploded_{get_random_hex()}.glb")
    exploded_mesh.export(exploded_mesh_path)

    torch.cuda.empty_cache()

    return mesh_path, exploded_mesh_path


with gr.Blocks(title="HoloPart") as demo:
    gr.Markdown(HEADER)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                input_mesh = gr.Model3D(label="Input Mesh")
                example_image = gr.Image(label="Example Image", type="filepath", interactive=False, visible=False)
                # seg_image = gr.Image(
                #     label="Segmentation Result", type="pil", format="png", interactive=False
                # )
                
            with gr.Accordion("Generation Settings", open=True):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=0,
                    value=0
                )
                # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=8,
                    maximum=50,
                    step=1,
                    value=25,
                )
                guidance_scale = gr.Slider(
                    label="CFG scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=3.5,
                )

                with gr.Row():
                    reduce_face = gr.Checkbox(label="Simplify Mesh", value=True, interactive=False)
                    # target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")

                gen_button = gr.Button("Decompose Parts", variant="primary")

        with gr.Column():
            model_output = gr.Model3D(label="Decomposed GLB", interactive=False)
            exploded_parts_output = gr.Model3D(label="Exploded Parts", interactive=False)

    with gr.Row():
        examples = gr.Examples(
            examples=EXAMPLES,
            fn=run_example,
            inputs=[input_mesh, example_image],
            outputs=[model_output, exploded_parts_output],
            cache_examples=True,
        )


    gen_button.click(
        run_full,
        inputs=[
            input_mesh, 
            seed, 
            num_inference_steps, 
            guidance_scale
        ],
        outputs=[model_output, exploded_parts_output],
    )

    demo.load(start_session)
    demo.unload(end_session)

demo.launch()