Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
f89a9bf
0
Parent(s):
init
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +243 -0
- requirements.txt +25 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: HoloPart
|
| 3 |
+
emoji: 🔮
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.24.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import trimesh
|
| 8 |
+
import random
|
| 9 |
+
from transformers import AutoModelForImageSegmentation
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from huggingface_hub import hf_hub_download, snapshot_download, login
|
| 12 |
+
import subprocess
|
| 13 |
+
import shutil
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
DTYPE = torch.float16
|
| 18 |
+
|
| 19 |
+
print("DEVICE: ", DEVICE)
|
| 20 |
+
|
| 21 |
+
DEFAULT_PART_FACE_NUMBER = 10000
|
| 22 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 23 |
+
HOLOPART_REPO_URL = "https://github.com/VAST-AI-Research/HoloPart"
|
| 24 |
+
HOLOPART_PRETRAINED_MODEL = "checkpoints/HoloPart"
|
| 25 |
+
|
| 26 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
| 27 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
HOLOPART_CODE_DIR = "./holopart"
|
| 30 |
+
if not os.path.exists(HOLOPART_REPO_URL):
|
| 31 |
+
os.system(f"git clone {HOLOPART_REPO_URL} {HOLOPART_CODE_DIR}")
|
| 32 |
+
|
| 33 |
+
import sys
|
| 34 |
+
sys.path.append(HOLOPART_CODE_DIR)
|
| 35 |
+
sys.path.append(os.path.join(HOLOPART_CODE_DIR, "scripts"))
|
| 36 |
+
|
| 37 |
+
EXAMPLES = [
|
| 38 |
+
["./holopart/assets/example_data/000.glb", "./holopart/assets/example_data/000.png"],
|
| 39 |
+
["./holopart/assets/example_data/001.glb", "./holopart/assets/example_data/001.png"],
|
| 40 |
+
["./holopart/assets/example_data/002.glb", "./holopart/assets/example_data/002.png"],
|
| 41 |
+
["./holopart/assets/example_data/003.glb", "./holopart/assets/example_data/003.png"],
|
| 42 |
+
["./holopart/assets/example_data/004.glb", "./holopart/assets/example_data/004.png"],
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
HEADER = """
|
| 46 |
+
# 🔮 Decompose a 3D shape into complete parts with [HoloPart](https://github.com/VAST-AI-Research/HoloPart).
|
| 47 |
+
### Step 1: Prepare Your Segmented Mesh
|
| 48 |
+
Upload a mesh with part segmentation. We recommend using these segmentation tools:
|
| 49 |
+
- [SAMPart3D](https://github.com/Pointcept/SAMPart3D)
|
| 50 |
+
- [SAMesh](https://github.com/gtangg12/samesh)
|
| 51 |
+
For a mesh file `mesh.glb` and corresponding face mask `mask.npy`, prepare your input using this Python code:
|
| 52 |
+
```python
|
| 53 |
+
import trimesh
|
| 54 |
+
import numpy as np
|
| 55 |
+
mesh = trimesh.load("mesh.glb", force="mesh")
|
| 56 |
+
mesh_parts = []
|
| 57 |
+
for part_id in np.unique(mask_npy):
|
| 58 |
+
mesh_part = mesh.submesh([mask_npy == part_id], append=True)
|
| 59 |
+
mesh_parts.append(mesh_part)
|
| 60 |
+
mesh_parts = trimesh.Scene(mesh_parts).export(input_mesh.glb)
|
| 61 |
+
```
|
| 62 |
+
The resulting **input_mesh.glb** is your prepared input for HoloPart.
|
| 63 |
+
### Step 2: Click the Decompose Parts button to begin the decomposition process.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
from inference_holopart import prepare_data, run_holopart
|
| 67 |
+
from holopart.pipelines.pipeline_holopart import HoloPartPipeline
|
| 68 |
+
|
| 69 |
+
snapshot_download("VAST-AI/HoloPart", local_dir=HOLOPART_PRETRAINED_MODEL)
|
| 70 |
+
holopart_pipe = HoloPartPipeline.from_pretrained(HOLOPART_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
| 71 |
+
|
| 72 |
+
def start_session(req: gr.Request):
|
| 73 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 74 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 75 |
+
print("start session, mkdir", save_dir)
|
| 76 |
+
|
| 77 |
+
def end_session(req: gr.Request):
|
| 78 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 79 |
+
shutil.rmtree(save_dir)
|
| 80 |
+
|
| 81 |
+
def get_random_hex():
|
| 82 |
+
random_bytes = os.urandom(8)
|
| 83 |
+
random_hex = random_bytes.hex()
|
| 84 |
+
return random_hex
|
| 85 |
+
|
| 86 |
+
def get_random_seed(randomize_seed, seed):
|
| 87 |
+
if randomize_seed:
|
| 88 |
+
seed = random.randint(0, MAX_SEED)
|
| 89 |
+
return seed
|
| 90 |
+
|
| 91 |
+
def explode_mesh(mesh: trimesh.Scene, explode_factor: float = 0.5):
|
| 92 |
+
center = mesh.centroid
|
| 93 |
+
exploded_mesh = trimesh.Scene()
|
| 94 |
+
for geometry_name, geometry in mesh.geometry.items():
|
| 95 |
+
transform = mesh.graph[geometry_name][0]
|
| 96 |
+
vertices_global = trimesh.transformations.transform_points(
|
| 97 |
+
geometry.vertices, transform)
|
| 98 |
+
part_center = np.mean(vertices_global, axis=0)
|
| 99 |
+
direction = part_center - center
|
| 100 |
+
direction_length = np.linalg.norm(direction)
|
| 101 |
+
if direction_length > 0:
|
| 102 |
+
direction = direction / direction_length
|
| 103 |
+
displacement = direction * explode_factor
|
| 104 |
+
new_transform = np.copy(transform)
|
| 105 |
+
new_transform[:3, 3] += displacement
|
| 106 |
+
exploded_mesh.add_geometry(geometry, transform=new_transform, geom_name=geometry_name)
|
| 107 |
+
return exploded_mesh
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@spaces.GPU(duration=600)
|
| 111 |
+
def run_full(data_path, seed=42, num_inference_steps=25, guidance_scale=3.5):
|
| 112 |
+
|
| 113 |
+
batch_size = 30
|
| 114 |
+
parts_data = prepare_data(data_path)
|
| 115 |
+
|
| 116 |
+
part_scene = run_holopart(
|
| 117 |
+
holopart_pipe,
|
| 118 |
+
batch=parts_data,
|
| 119 |
+
batch_size=batch_size,
|
| 120 |
+
seed=seed,
|
| 121 |
+
num_inference_steps=num_inference_steps,
|
| 122 |
+
guidance_scale=guidance_scale,
|
| 123 |
+
num_chunks=1000000,
|
| 124 |
+
)
|
| 125 |
+
print("mesh extraction done")
|
| 126 |
+
|
| 127 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
| 128 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 129 |
+
mesh_path = os.path.join(save_dir, f"holorpart_{get_random_hex()}.glb")
|
| 130 |
+
part_scene.export(mesh_path)
|
| 131 |
+
print("save to ", mesh_path)
|
| 132 |
+
exploded_mesh = explode_mesh(part_scene, 0.7)
|
| 133 |
+
exploded_mesh_path = os.path.join(save_dir, f"holorpart_exploded_{get_random_hex()}.glb")
|
| 134 |
+
exploded_mesh.export(exploded_mesh_path)
|
| 135 |
+
|
| 136 |
+
torch.cuda.empty_cache()
|
| 137 |
+
|
| 138 |
+
return mesh_path, exploded_mesh_path
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@spaces.GPU(duration=600)
|
| 142 |
+
def run_example(data_path: str, example_image_path, seed=42, num_inference_steps=25, guidance_scale=3.5):
|
| 143 |
+
|
| 144 |
+
batch_size = 30
|
| 145 |
+
parts_data = prepare_data(data_path)
|
| 146 |
+
|
| 147 |
+
part_scene = run_holopart(
|
| 148 |
+
holopart_pipe,
|
| 149 |
+
batch=parts_data,
|
| 150 |
+
batch_size=batch_size,
|
| 151 |
+
seed=seed,
|
| 152 |
+
num_inference_steps=num_inference_steps,
|
| 153 |
+
guidance_scale=guidance_scale,
|
| 154 |
+
num_chunks=1000000,
|
| 155 |
+
)
|
| 156 |
+
print("mesh extraction done")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
| 160 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 161 |
+
mesh_path = os.path.join(save_dir, f"holorpart_{get_random_hex()}.glb")
|
| 162 |
+
part_scene.export(mesh_path)
|
| 163 |
+
print("save to ", mesh_path)
|
| 164 |
+
exploded_mesh = explode_mesh(part_scene, 0.5)
|
| 165 |
+
exploded_mesh_path = os.path.join(save_dir, f"holorpart_exploded_{get_random_hex()}.glb")
|
| 166 |
+
exploded_mesh.export(exploded_mesh_path)
|
| 167 |
+
|
| 168 |
+
torch.cuda.empty_cache()
|
| 169 |
+
|
| 170 |
+
return mesh_path, exploded_mesh_path
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
with gr.Blocks(title="HoloPart") as demo:
|
| 174 |
+
gr.Markdown(HEADER)
|
| 175 |
+
|
| 176 |
+
with gr.Row():
|
| 177 |
+
with gr.Column():
|
| 178 |
+
with gr.Row():
|
| 179 |
+
input_mesh = gr.Model3D(label="Input Mesh")
|
| 180 |
+
example_image = gr.Image(label="Example Image", type="filepath", interactive=False, visible=False)
|
| 181 |
+
# seg_image = gr.Image(
|
| 182 |
+
# label="Segmentation Result", type="pil", format="png", interactive=False
|
| 183 |
+
# )
|
| 184 |
+
|
| 185 |
+
with gr.Accordion("Generation Settings", open=True):
|
| 186 |
+
seed = gr.Slider(
|
| 187 |
+
label="Seed",
|
| 188 |
+
minimum=0,
|
| 189 |
+
maximum=MAX_SEED,
|
| 190 |
+
step=0,
|
| 191 |
+
value=0
|
| 192 |
+
)
|
| 193 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 194 |
+
num_inference_steps = gr.Slider(
|
| 195 |
+
label="Number of inference steps",
|
| 196 |
+
minimum=8,
|
| 197 |
+
maximum=50,
|
| 198 |
+
step=1,
|
| 199 |
+
value=25,
|
| 200 |
+
)
|
| 201 |
+
guidance_scale = gr.Slider(
|
| 202 |
+
label="CFG scale",
|
| 203 |
+
minimum=0.0,
|
| 204 |
+
maximum=20.0,
|
| 205 |
+
step=0.1,
|
| 206 |
+
value=3.5,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True, interactive=False)
|
| 211 |
+
# target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")
|
| 212 |
+
|
| 213 |
+
gen_button = gr.Button("Decompose Parts", variant="primary")
|
| 214 |
+
|
| 215 |
+
with gr.Column():
|
| 216 |
+
model_output = gr.Model3D(label="Decomposed GLB", interactive=False)
|
| 217 |
+
exploded_parts_output = gr.Model3D(label="Exploded Parts", interactive=False)
|
| 218 |
+
|
| 219 |
+
with gr.Row():
|
| 220 |
+
examples = gr.Examples(
|
| 221 |
+
examples=EXAMPLES,
|
| 222 |
+
fn=run_example,
|
| 223 |
+
inputs=[input_mesh, example_image],
|
| 224 |
+
outputs=[model_output, exploded_parts_output],
|
| 225 |
+
cache_examples=True,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
gen_button.click(
|
| 230 |
+
run_full,
|
| 231 |
+
inputs=[
|
| 232 |
+
input_mesh,
|
| 233 |
+
seed,
|
| 234 |
+
num_inference_steps,
|
| 235 |
+
guidance_scale
|
| 236 |
+
],
|
| 237 |
+
outputs=[model_output, exploded_parts_output],
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
demo.load(start_session)
|
| 241 |
+
demo.unload(end_session)
|
| 242 |
+
|
| 243 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torchvision
|
| 2 |
+
diffusers
|
| 3 |
+
transformers==4.49.0
|
| 4 |
+
einops
|
| 5 |
+
huggingface_hub
|
| 6 |
+
opencv-python
|
| 7 |
+
trimesh==4.5.3
|
| 8 |
+
omegaconf
|
| 9 |
+
scikit-image
|
| 10 |
+
numpy
|
| 11 |
+
peft
|
| 12 |
+
scipy==1.11.4
|
| 13 |
+
jaxtyping
|
| 14 |
+
typeguard
|
| 15 |
+
pymeshlab==2022.2.post4
|
| 16 |
+
open3d
|
| 17 |
+
timm
|
| 18 |
+
kornia
|
| 19 |
+
ninja
|
| 20 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
|
| 21 |
+
cvcuda_cu12
|
| 22 |
+
gltflib
|
| 23 |
+
https://huggingface.co/spaces/VAST-AI/TripoSG/resolve/main/diso-0.1.4-cp310-cp310-linux_x86_64.whl?download=true
|
| 24 |
+
--find-links https://data.pyg.org/whl/torch-2.6.0+cu124.html
|
| 25 |
+
torch-cluster
|