Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
f89a9bf
0
Parent(s):
init
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +243 -0
- requirements.txt +25 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: HoloPart
|
3 |
+
emoji: 🔮
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.24.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import trimesh
|
8 |
+
import random
|
9 |
+
from transformers import AutoModelForImageSegmentation
|
10 |
+
from torchvision import transforms
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download, login
|
12 |
+
import subprocess
|
13 |
+
import shutil
|
14 |
+
|
15 |
+
|
16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
DTYPE = torch.float16
|
18 |
+
|
19 |
+
print("DEVICE: ", DEVICE)
|
20 |
+
|
21 |
+
DEFAULT_PART_FACE_NUMBER = 10000
|
22 |
+
MAX_SEED = np.iinfo(np.int32).max
|
23 |
+
HOLOPART_REPO_URL = "https://github.com/VAST-AI-Research/HoloPart"
|
24 |
+
HOLOPART_PRETRAINED_MODEL = "checkpoints/HoloPart"
|
25 |
+
|
26 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
27 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
28 |
+
|
29 |
+
HOLOPART_CODE_DIR = "./holopart"
|
30 |
+
if not os.path.exists(HOLOPART_REPO_URL):
|
31 |
+
os.system(f"git clone {HOLOPART_REPO_URL} {HOLOPART_CODE_DIR}")
|
32 |
+
|
33 |
+
import sys
|
34 |
+
sys.path.append(HOLOPART_CODE_DIR)
|
35 |
+
sys.path.append(os.path.join(HOLOPART_CODE_DIR, "scripts"))
|
36 |
+
|
37 |
+
EXAMPLES = [
|
38 |
+
["./holopart/assets/example_data/000.glb", "./holopart/assets/example_data/000.png"],
|
39 |
+
["./holopart/assets/example_data/001.glb", "./holopart/assets/example_data/001.png"],
|
40 |
+
["./holopart/assets/example_data/002.glb", "./holopart/assets/example_data/002.png"],
|
41 |
+
["./holopart/assets/example_data/003.glb", "./holopart/assets/example_data/003.png"],
|
42 |
+
["./holopart/assets/example_data/004.glb", "./holopart/assets/example_data/004.png"],
|
43 |
+
]
|
44 |
+
|
45 |
+
HEADER = """
|
46 |
+
# 🔮 Decompose a 3D shape into complete parts with [HoloPart](https://github.com/VAST-AI-Research/HoloPart).
|
47 |
+
### Step 1: Prepare Your Segmented Mesh
|
48 |
+
Upload a mesh with part segmentation. We recommend using these segmentation tools:
|
49 |
+
- [SAMPart3D](https://github.com/Pointcept/SAMPart3D)
|
50 |
+
- [SAMesh](https://github.com/gtangg12/samesh)
|
51 |
+
For a mesh file `mesh.glb` and corresponding face mask `mask.npy`, prepare your input using this Python code:
|
52 |
+
```python
|
53 |
+
import trimesh
|
54 |
+
import numpy as np
|
55 |
+
mesh = trimesh.load("mesh.glb", force="mesh")
|
56 |
+
mesh_parts = []
|
57 |
+
for part_id in np.unique(mask_npy):
|
58 |
+
mesh_part = mesh.submesh([mask_npy == part_id], append=True)
|
59 |
+
mesh_parts.append(mesh_part)
|
60 |
+
mesh_parts = trimesh.Scene(mesh_parts).export(input_mesh.glb)
|
61 |
+
```
|
62 |
+
The resulting **input_mesh.glb** is your prepared input for HoloPart.
|
63 |
+
### Step 2: Click the Decompose Parts button to begin the decomposition process.
|
64 |
+
"""
|
65 |
+
|
66 |
+
from inference_holopart import prepare_data, run_holopart
|
67 |
+
from holopart.pipelines.pipeline_holopart import HoloPartPipeline
|
68 |
+
|
69 |
+
snapshot_download("VAST-AI/HoloPart", local_dir=HOLOPART_PRETRAINED_MODEL)
|
70 |
+
holopart_pipe = HoloPartPipeline.from_pretrained(HOLOPART_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
71 |
+
|
72 |
+
def start_session(req: gr.Request):
|
73 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
74 |
+
os.makedirs(save_dir, exist_ok=True)
|
75 |
+
print("start session, mkdir", save_dir)
|
76 |
+
|
77 |
+
def end_session(req: gr.Request):
|
78 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
79 |
+
shutil.rmtree(save_dir)
|
80 |
+
|
81 |
+
def get_random_hex():
|
82 |
+
random_bytes = os.urandom(8)
|
83 |
+
random_hex = random_bytes.hex()
|
84 |
+
return random_hex
|
85 |
+
|
86 |
+
def get_random_seed(randomize_seed, seed):
|
87 |
+
if randomize_seed:
|
88 |
+
seed = random.randint(0, MAX_SEED)
|
89 |
+
return seed
|
90 |
+
|
91 |
+
def explode_mesh(mesh: trimesh.Scene, explode_factor: float = 0.5):
|
92 |
+
center = mesh.centroid
|
93 |
+
exploded_mesh = trimesh.Scene()
|
94 |
+
for geometry_name, geometry in mesh.geometry.items():
|
95 |
+
transform = mesh.graph[geometry_name][0]
|
96 |
+
vertices_global = trimesh.transformations.transform_points(
|
97 |
+
geometry.vertices, transform)
|
98 |
+
part_center = np.mean(vertices_global, axis=0)
|
99 |
+
direction = part_center - center
|
100 |
+
direction_length = np.linalg.norm(direction)
|
101 |
+
if direction_length > 0:
|
102 |
+
direction = direction / direction_length
|
103 |
+
displacement = direction * explode_factor
|
104 |
+
new_transform = np.copy(transform)
|
105 |
+
new_transform[:3, 3] += displacement
|
106 |
+
exploded_mesh.add_geometry(geometry, transform=new_transform, geom_name=geometry_name)
|
107 |
+
return exploded_mesh
|
108 |
+
|
109 |
+
|
110 |
+
@spaces.GPU(duration=600)
|
111 |
+
def run_full(data_path, seed=42, num_inference_steps=25, guidance_scale=3.5):
|
112 |
+
|
113 |
+
batch_size = 30
|
114 |
+
parts_data = prepare_data(data_path)
|
115 |
+
|
116 |
+
part_scene = run_holopart(
|
117 |
+
holopart_pipe,
|
118 |
+
batch=parts_data,
|
119 |
+
batch_size=batch_size,
|
120 |
+
seed=seed,
|
121 |
+
num_inference_steps=num_inference_steps,
|
122 |
+
guidance_scale=guidance_scale,
|
123 |
+
num_chunks=1000000,
|
124 |
+
)
|
125 |
+
print("mesh extraction done")
|
126 |
+
|
127 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
128 |
+
os.makedirs(save_dir, exist_ok=True)
|
129 |
+
mesh_path = os.path.join(save_dir, f"holorpart_{get_random_hex()}.glb")
|
130 |
+
part_scene.export(mesh_path)
|
131 |
+
print("save to ", mesh_path)
|
132 |
+
exploded_mesh = explode_mesh(part_scene, 0.7)
|
133 |
+
exploded_mesh_path = os.path.join(save_dir, f"holorpart_exploded_{get_random_hex()}.glb")
|
134 |
+
exploded_mesh.export(exploded_mesh_path)
|
135 |
+
|
136 |
+
torch.cuda.empty_cache()
|
137 |
+
|
138 |
+
return mesh_path, exploded_mesh_path
|
139 |
+
|
140 |
+
|
141 |
+
@spaces.GPU(duration=600)
|
142 |
+
def run_example(data_path: str, example_image_path, seed=42, num_inference_steps=25, guidance_scale=3.5):
|
143 |
+
|
144 |
+
batch_size = 30
|
145 |
+
parts_data = prepare_data(data_path)
|
146 |
+
|
147 |
+
part_scene = run_holopart(
|
148 |
+
holopart_pipe,
|
149 |
+
batch=parts_data,
|
150 |
+
batch_size=batch_size,
|
151 |
+
seed=seed,
|
152 |
+
num_inference_steps=num_inference_steps,
|
153 |
+
guidance_scale=guidance_scale,
|
154 |
+
num_chunks=1000000,
|
155 |
+
)
|
156 |
+
print("mesh extraction done")
|
157 |
+
|
158 |
+
|
159 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
160 |
+
os.makedirs(save_dir, exist_ok=True)
|
161 |
+
mesh_path = os.path.join(save_dir, f"holorpart_{get_random_hex()}.glb")
|
162 |
+
part_scene.export(mesh_path)
|
163 |
+
print("save to ", mesh_path)
|
164 |
+
exploded_mesh = explode_mesh(part_scene, 0.5)
|
165 |
+
exploded_mesh_path = os.path.join(save_dir, f"holorpart_exploded_{get_random_hex()}.glb")
|
166 |
+
exploded_mesh.export(exploded_mesh_path)
|
167 |
+
|
168 |
+
torch.cuda.empty_cache()
|
169 |
+
|
170 |
+
return mesh_path, exploded_mesh_path
|
171 |
+
|
172 |
+
|
173 |
+
with gr.Blocks(title="HoloPart") as demo:
|
174 |
+
gr.Markdown(HEADER)
|
175 |
+
|
176 |
+
with gr.Row():
|
177 |
+
with gr.Column():
|
178 |
+
with gr.Row():
|
179 |
+
input_mesh = gr.Model3D(label="Input Mesh")
|
180 |
+
example_image = gr.Image(label="Example Image", type="filepath", interactive=False, visible=False)
|
181 |
+
# seg_image = gr.Image(
|
182 |
+
# label="Segmentation Result", type="pil", format="png", interactive=False
|
183 |
+
# )
|
184 |
+
|
185 |
+
with gr.Accordion("Generation Settings", open=True):
|
186 |
+
seed = gr.Slider(
|
187 |
+
label="Seed",
|
188 |
+
minimum=0,
|
189 |
+
maximum=MAX_SEED,
|
190 |
+
step=0,
|
191 |
+
value=0
|
192 |
+
)
|
193 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
194 |
+
num_inference_steps = gr.Slider(
|
195 |
+
label="Number of inference steps",
|
196 |
+
minimum=8,
|
197 |
+
maximum=50,
|
198 |
+
step=1,
|
199 |
+
value=25,
|
200 |
+
)
|
201 |
+
guidance_scale = gr.Slider(
|
202 |
+
label="CFG scale",
|
203 |
+
minimum=0.0,
|
204 |
+
maximum=20.0,
|
205 |
+
step=0.1,
|
206 |
+
value=3.5,
|
207 |
+
)
|
208 |
+
|
209 |
+
with gr.Row():
|
210 |
+
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True, interactive=False)
|
211 |
+
# target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")
|
212 |
+
|
213 |
+
gen_button = gr.Button("Decompose Parts", variant="primary")
|
214 |
+
|
215 |
+
with gr.Column():
|
216 |
+
model_output = gr.Model3D(label="Decomposed GLB", interactive=False)
|
217 |
+
exploded_parts_output = gr.Model3D(label="Exploded Parts", interactive=False)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
examples = gr.Examples(
|
221 |
+
examples=EXAMPLES,
|
222 |
+
fn=run_example,
|
223 |
+
inputs=[input_mesh, example_image],
|
224 |
+
outputs=[model_output, exploded_parts_output],
|
225 |
+
cache_examples=True,
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
gen_button.click(
|
230 |
+
run_full,
|
231 |
+
inputs=[
|
232 |
+
input_mesh,
|
233 |
+
seed,
|
234 |
+
num_inference_steps,
|
235 |
+
guidance_scale
|
236 |
+
],
|
237 |
+
outputs=[model_output, exploded_parts_output],
|
238 |
+
)
|
239 |
+
|
240 |
+
demo.load(start_session)
|
241 |
+
demo.unload(end_session)
|
242 |
+
|
243 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torchvision
|
2 |
+
diffusers
|
3 |
+
transformers==4.49.0
|
4 |
+
einops
|
5 |
+
huggingface_hub
|
6 |
+
opencv-python
|
7 |
+
trimesh==4.5.3
|
8 |
+
omegaconf
|
9 |
+
scikit-image
|
10 |
+
numpy
|
11 |
+
peft
|
12 |
+
scipy==1.11.4
|
13 |
+
jaxtyping
|
14 |
+
typeguard
|
15 |
+
pymeshlab==2022.2.post4
|
16 |
+
open3d
|
17 |
+
timm
|
18 |
+
kornia
|
19 |
+
ninja
|
20 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
|
21 |
+
cvcuda_cu12
|
22 |
+
gltflib
|
23 |
+
https://huggingface.co/spaces/VAST-AI/TripoSG/resolve/main/diso-0.1.4-cp310-cp310-linux_x86_64.whl?download=true
|
24 |
+
--find-links https://data.pyg.org/whl/torch-2.6.0+cu124.html
|
25 |
+
torch-cluster
|