File size: 32,721 Bytes
32f55ce
 
 
1a5d9fe
 
32f55ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5d9fe
32f55ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5d9fe
32f55ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5d9fe
 
32f55ce
 
 
 
d4e8d2a
32f55ce
d395bfe
b3f8eaa
 
 
 
 
1c216bc
 
71f4d78
5af6229
e2054d4
a3a9b00
e2054d4
71f4d78
e2054d4
 
a3a9b00
e2054d4
71f4d78
1c216bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1013fe
 
1c216bc
f1013fe
 
 
 
 
 
 
 
 
1c216bc
f1013fe
 
1c216bc
4bdf4c1
 
 
 
 
 
f1013fe
4bdf4c1
 
1c216bc
 
 
d395bfe
1c216bc
f1013fe
 
 
e2054d4
 
 
 
 
 
 
 
 
 
 
 
4bdf4c1
 
 
 
 
 
e2054d4
4bdf4c1
 
e2054d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bdf4c1
 
 
 
 
 
e2054d4
4bdf4c1
 
32f55ce
e2054d4
 
 
 
 
 
 
b3f8eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24986f4
b3f8eaa
 
 
 
e2054d4
 
b41e3b2
e2054d4
 
4bdf4c1
 
32f55ce
 
 
 
4bdf4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f55ce
 
4bdf4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f55ce
 
 
93a22bf
 
 
 
 
 
 
 
32f55ce
1a5d9fe
32f55ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import os
import io
import gradio as gr
import pandas as pd
import json
import shutil
import tempfile
import datetime
import zipfile
import numpy as np


from constants import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")

global data_component, filter_component


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

def add_new_eval_i2v(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    model_link: str,
    team_name: str,
    contact_email: str,
    access_type: str,
    model_publish: str,
    model_resolution: str,
    model_fps: str,
    model_frame: str,
    model_video_length: str,
    model_checkpoint: str,
    model_commit_id: str,
    model_video_format: str
):
    COLNAME2KEY={
        "Video-Text Camera Motion":"camera_motion",
        "Video-Image Subject Consistency": "i2v_subject",
        "Video-Image Background Consistency": "i2v_background",
        "Subject Consistency": "subject_consistency",
        "Background Consistency": "background_consistency",
        "Motion Smoothness": "motion_smoothness",
        "Dynamic Degree": "dynamic_degree",
        "Aesthetic Quality": "aesthetic_quality",
        "Imaging Quality": "imaging_quality",
        "Temporal Flickering": "temporal_flickering"
        }
    if input_file is None:
        return "Error! Empty file!"
    if  model_link == '' or model_name_textbox == '' or contact_email == '':
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
    
    upload_content = input_file
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    
    now = datetime.datetime.now()
    update_time = now.strftime("%Y-%m-%d")  # Capture update time
    with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
        f.write(input_file)
    # shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))

    csv_data = pd.read_csv(I2V_DIR)

    if revision_name_textbox == '':
        col = csv_data.shape[0]
        model_name = model_name_textbox.replace(',',' ')
    else:
        model_name = revision_name_textbox.replace(',',' ')
        model_name_list = csv_data['Model Name (clickable)']
        name_list = [name.split(']')[0][1:] for name in model_name_list]
        if revision_name_textbox not in name_list:
            col = csv_data.shape[0]
        else:
            col = name_list.index(revision_name_textbox)    
    if model_link == '':
        model_name = model_name  # no url
    else:
        model_name = '[' + model_name + '](' + model_link + ')'

    os.makedirs(filename, exist_ok=True)
    with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
        zip_ref.extractall(filename)

    upload_data = {}
    for file in os.listdir(filename):
        if file.startswith('.') or file.startswith('__'):
            print(f"Skip the file: {file}")
            continue
        cur_file = os.path.join(filename, file)
        if os.path.isdir(cur_file):
            for subfile in os.listdir(cur_file):
                if subfile.endswith(".json"):
                    with open(os.path.join(cur_file, subfile)) as ff:
                        cur_json = json.load(ff)
                        print(file, type(cur_json))
                        if isinstance(cur_json, dict):
                            print(cur_json.keys())
                            for key in cur_json:
                                upload_data[key] = cur_json[key][0]
                                print(f"{key}:{cur_json[key][0]}")
        elif cur_file.endswith('json'):
            with open(cur_file) as ff:
                cur_json = json.load(ff)
                print(file, type(cur_json))
                if isinstance(cur_json, dict):
                    print(cur_json.keys())
                    for key in cur_json:
                        upload_data[key] = cur_json[key][0]
                        print(f"{key}:{cur_json[key][0]}")
    # add new data
    new_data = [model_name]
    print('upload_data:', upload_data)
    I2V_HEAD= ["Video-Text Camera Motion",
    "Video-Image Subject Consistency",
    "Video-Image Background Consistency",
    "Subject Consistency",
    "Background Consistency",
    "Temporal Flickering",
    "Motion Smoothness",
    "Dynamic Degree",
    "Aesthetic Quality",
    "Imaging Quality" ]
    for key in I2V_HEAD :
        sub_key = COLNAME2KEY[key]
        if sub_key in upload_data:
            new_data.append(upload_data[sub_key])
        else:
            new_data.append(0)
    if team_name =='' or 'vbench' in team_name.lower():
        new_data.append("User Upload")
    else:
        new_data.append(team_name)

    new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
    new_data.append(update_time)  # Add the update time
    new_data.append(team_name)
    new_data.append(access_type)

    csv_data.loc[col] = new_data
    csv_data = csv_data.to_csv(I2V_DIR , index=False)
    with open(INFO_DIR,'a') as f:
        f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
    submission_repo.push_to_hub()
    print("success update", model_name)
    return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)

def get_normalized_df(df):
    # final_score = df.drop('name', axis=1).sum(axis=1)
    # df.insert(1, 'Overall Score', final_score)
    normalize_df = df.copy().fillna(0.0)
    for column in normalize_df.columns[1:-5]:
        min_val = NORMALIZE_DIC[column]['Min']
        max_val = NORMALIZE_DIC[column]['Max']
        normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
    return normalize_df

def get_normalized_i2v_df(df):
    normalize_df = df.copy().fillna(0.0)
    for column in normalize_df.columns[1:-5]:
        min_val = NORMALIZE_DIC_I2V[column]['Min']
        max_val = NORMALIZE_DIC_I2V[column]['Max']
        normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
    return normalize_df


def calculate_selected_score(df, selected_columns):
    # selected_score = df[selected_columns].sum(axis=1)
    selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
    selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
    selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
    selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
    if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
        selected_score =  (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
        return selected_score.fillna(0.0)
    if selected_quality_score.isna().any().any():
        return selected_semantic_score
    if selected_semantic_score.isna().any().any():
        return selected_quality_score
    # print(selected_semantic_score,selected_quality_score )
    selected_score =  (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
    return selected_score.fillna(0.0)

def calculate_selected_score_i2v(df, selected_columns):
    # selected_score = df[selected_columns].sum(axis=1)
    selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
    selected_I2V = [i for i in selected_columns if i in I2V_LIST]
    selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
    selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
    if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
        selected_score =  (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
        return selected_score.fillna(0.0)
    if selected_quality_score.isna().any().any():
        return selected_i2v_score
    if selected_i2v_score.isna().any().any():
        return selected_quality_score
    # print(selected_i2v_score,selected_quality_score )
    selected_score =  (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
    return selected_score.fillna(0.0)

def get_final_score(df, selected_columns):
    normalize_df = get_normalized_df(df)
    #final_score = normalize_df.drop('name', axis=1).sum(axis=1)
    try:
        for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
            normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
    except:
        for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
            normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
    quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
    semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
    final_score =  (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
    if 'Total Score' in df:
        df['Total Score'] = final_score
    else:
        df.insert(1, 'Total Score', final_score)
    if 'Semantic Score' in df:
        df['Semantic Score'] = semantic_score
    else:
        df.insert(2, 'Semantic Score', semantic_score)
    if 'Quality Score' in df:
        df['Quality Score'] = quality_score
    else:
        df.insert(3, 'Quality Score', quality_score)
    selected_score = calculate_selected_score(normalize_df, selected_columns)
    if 'Selected Score' in df:
        df['Selected Score'] = selected_score
    else:
        df.insert(1, 'Selected Score', selected_score)
    return df

def get_final_score_i2v(df, selected_columns):
    normalize_df = get_normalized_i2v_df(df)
    try:
        for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
            normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
    except:
        for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
            normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
    quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
    i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
    final_score =  (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
    if 'Total Score' in df:
        df['Total Score'] = final_score
    else:
        df.insert(1, 'Total Score', final_score)
    if 'I2V Score' in df:
        df['I2V Score'] = i2v_score
    else:
        df.insert(2, 'I2V Score', i2v_score)
    if 'Quality Score' in df:
        df['Quality Score'] = quality_score
    else:
        df.insert(3, 'Quality Score', quality_score)
    selected_score = calculate_selected_score_i2v(normalize_df, selected_columns)
    if 'Selected Score' in df:
        df['Selected Score'] = selected_score
    else:
        df.insert(1, 'Selected Score', selected_score)
    # df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.'
    mask = df.iloc[:, 5:-5].isnull().any(axis=1)
    df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan
    # df.fillna('N.A.', inplace=True)
    return df



def get_final_score_quality(df, selected_columns):
    normalize_df = get_normalized_df(df)
    for name in normalize_df.drop('Model Name (clickable)', axis=1):
        normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
    quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])

    if 'Quality Score' in df:
        df['Quality Score'] = quality_score
    else:
        df.insert(1, 'Quality Score', quality_score)
    # selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
    selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
    if 'Selected Score' in df:
        df['Selected Score'] = selected_score
    else:
        df.insert(1, 'Selected Score', selected_score)
    return df



def get_baseline_df():
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(CSV_DIR)
    df = get_final_score(df, checkbox_group.value)
    df = df.sort_values(by="Selected Score", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    # print(present_columns)
    df = df[present_columns]
    # Add this line to display the results evaluated by VBench by default
    df = df[df['Evaluated by'] == 'VBench Team']
    df = convert_scores_to_percentage(df)
    return df

def get_all_df(selected_columns, dir=CSV_DIR):
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(dir)
    df = get_final_score(df, selected_columns)
    df = df.sort_values(by="Selected Score", ascending=False)
    return df
    
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(dir)
    df = get_final_score_quality(df, selected_columns)
    df = df.sort_values(by="Selected Score", ascending=False)
    return df

def get_all_df_i2v(selected_columns, dir=I2V_DIR):
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(dir)
    df = get_final_score_i2v(df, selected_columns)
    df = df.sort_values(by="Selected Score", ascending=False)
    return df

def get_all_df_long(selected_columns, dir=LONG_DIR):
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(dir)
    df = get_final_score(df, selected_columns)
    df = df.sort_values(by="Selected Score", ascending=False)
    return df


def convert_scores_to_percentage(df):
    # Operate on every column in the DataFrame (except the'name 'column)
    if "Sampled by" in df.columns:
        skip_col =3
    else:
        skip_col =1
    print(df)
    for column in df.columns[skip_col:]:  # 假设第一列是'name'
        # if df[column].isdigit():
        # print(df[column])
        # is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all()
        valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum()
        if valid_numeric_count > 0:
            df[column] = round(df[column] * 100,2)
            df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x)
            # df[column] = df[column].apply(lambda x:  f"{x:05.2f}") + '%'
    return df

def choose_all_quailty():
    return gr.update(value=QUALITY_LIST)

def choose_all_semantic():
    return gr.update(value=SEMANTIC_LIST)

def disable_all():
    return gr.update(value=[])
    
def enable_all():
    return gr.update(value=TASK_INFO)

# select function
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False):
    updated_data = get_all_df(selected_columns, CSV_DIR)
    if vbench_team_sample:
        updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team'] 
    if vbench_team_eval:
        updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
    #print(updated_data)
    # columns:
    selected_columns = [item for item in TASK_INFO if item in selected_columns]
    present_columns = MODEL_INFO + selected_columns
    updated_data = updated_data[present_columns]
    updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
    updated_data = convert_scores_to_percentage(updated_data)
    updated_headers = present_columns
    print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
    update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
    # print(updated_data,present_columns,update_datatype)
    filter_component = gr.components.Dataframe(
        value=updated_data, 
        headers=updated_headers,
        type="pandas", 
        datatype=update_datatype,
        interactive=False,
        visible=True,
        )
    return filter_component#.value

def on_filter_model_size_method_change_quality(selected_columns):
    updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
    #print(updated_data)
    # columns:
    selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
    present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
    updated_data = updated_data[present_columns]
    updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
    updated_data = convert_scores_to_percentage(updated_data)
    updated_headers = present_columns
    update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
    # print(updated_data,present_columns,update_datatype)
    filter_component = gr.components.Dataframe(
        value=updated_data, 
        headers=updated_headers,
        type="pandas", 
        datatype=update_datatype,
        interactive=False,
        visible=True,
        )
    return filter_component#.value

def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False):
    updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
    if vbench_team_sample:
        updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
    # if vbench_team_eval:
    #     updated_data = updated_data[updated_data['Eval'] == 'VBench Team']
    selected_columns = [item for item in I2V_TAB if item in selected_columns]
    present_columns = MODEL_INFO_TAB_I2V + selected_columns
    updated_data = updated_data[present_columns]
    updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
    updated_data = convert_scores_to_percentage(updated_data)
    updated_headers = present_columns
    update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers]
    # print(updated_data,present_columns,update_datatype)
    filter_component = gr.components.Dataframe(
        value=updated_data,
        headers=updated_headers,
        type="pandas", 
        datatype=update_datatype,
        interactive=False,
        visible=True,
        )
    return filter_component#.value

def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False):
    updated_data = get_all_df_long(selected_columns, LONG_DIR)
    if vbench_team_sample:
        updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
    if vbench_team_eval:
        updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
    selected_columns = [item for item in TASK_INFO if item in selected_columns]
    present_columns = MODEL_INFO + selected_columns
    updated_data = updated_data[present_columns]
    updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
    updated_data = convert_scores_to_percentage(updated_data)
    updated_headers = present_columns
    update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
    filter_component = gr.components.Dataframe(
        value=updated_data, 
        headers=updated_headers,
        type="pandas", 
        datatype=update_datatype,
        interactive=False,
        visible=True,
        )
    return filter_component#.value

block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # Table 0
        df_raw = pd.read_csv(
            "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard.csv", 
            header=[0, 1]  # 告诉 pandas 前两行为表头
        ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
        
        df_domain = pd.read_csv(
            "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/results.csv", 
            header=[0, 1]  # 告诉 pandas 前两行为表头
        ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
        
        df_chain_1 = pd.read_csv(
            "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain1.csv", 
            # header=[0, 1]  # 告诉 pandas 前两行为表头
        ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)

        df_chain_2 = pd.read_csv(
            "https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain2.csv", 
            # header=[0, 1]  # 告诉 pandas 前两行为表头
        ).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
        
        # 2) 将 MultiIndex 列名转换为单层列名,例如 "Animals-mAM"
        new_columns = []
        for col_tuple in df_raw.columns:
            # col_tuple 是形如 ("Animals", "mAM") 或 ("Model", nan) 的二元元组
            domain = str(col_tuple[0]).strip() if pd.notnull(col_tuple[0]) else ""
            metric = str(col_tuple[1]).strip() if pd.notnull(col_tuple[1]) else ""
            if domain and metric:
                new_columns.append(f"{domain}-{metric}")
            else:
                # 如果某一层为空,就只使用非空的那层
                new_columns.append(domain or metric)
        
        df_raw.columns = new_columns
        
        # 如果第一列是 "Model-" 这种情况,可以进行一下修正
        if df_raw.columns[0].endswith("-"):
            df_raw.rename(columns={df_raw.columns[0]: "Model"}, inplace=True)
        
        # 3) 用前面处理过的列来构建 checkbox 选项
        #    假设第一列 "Model" 不需要放到 checkbox 里
        all_columns = df_raw.columns.tolist()[1:]
        choices_from_csv = [col.strip() for col in all_columns if col.strip()]


        with gr.Tabs(elem_classes="tab-buttons") as tabs:
            with gr.TabItem("📊 V-STaR"):
                with gr.Row():
                    with gr.Accordion("Citation", open=False):
                        citation_button = gr.Textbox(
                            value=CITATION_BUTTON_TEXT,
                            label=CITATION_BUTTON_LABEL,
                            lines=14,
                        )
        
                gr.Markdown(TABLE_INTRODUCTION)
                
                # 复选框
                # checkbox_group = gr.CheckboxGroup(
                #     choices=choices_from_csv,
                #     value=choices_from_csv,  # 默认全选
                #     label="Evaluation Dimension",
                #     interactive=True,
                # )
                
                # with gr.Row():
                #     checkbox_group
        
                # 显示 DataFrame
                data_component = gr.Dataframe(
                    value=df_raw,
                    type="pandas",
                    interactive=False,
                    visible=True,
                )
            with gr.TabItem("📊 Chain 1"):
                with gr.Row():
                    with gr.Accordion("Citation", open=False):
                        citation_button = gr.Textbox(
                            value=CITATION_BUTTON_TEXT,
                            label=CITATION_BUTTON_LABEL,
                            lines=14,
                        )
        
                gr.Markdown(TABLE_INTRODUCTION)
                
                # 复选框
                # checkbox_group = gr.CheckboxGroup(
                #     choices=choices_from_csv,
                #     value=choices_from_csv,  # 默认全选
                #     label="Evaluation Dimension",
                #     interactive=True,
                # )
                
                # with gr.Row():
                #     checkbox_group
        
                # 显示 DataFrame
                data_component = gr.Dataframe(
                    value=df_chain_1,
                    type="pandas",
                    interactive=False,
                    visible=True,
                )

            with gr.TabItem("📊 Chain 2"):
                with gr.Row():
                    with gr.Accordion("Citation", open=False):
                        citation_button = gr.Textbox(
                            value=CITATION_BUTTON_TEXT,
                            label=CITATION_BUTTON_LABEL,
                            lines=14,
                        )
        
                gr.Markdown(TABLE_INTRODUCTION)
                
                # 复选框
                # checkbox_group = gr.CheckboxGroup(
                #     choices=choices_from_csv,
                #     value=choices_from_csv,  # 默认全选
                #     label="Evaluation Dimension",
                #     interactive=True,
                # )
                
                # with gr.Row():
                #     checkbox_group
        
                # 显示 DataFrame
                data_component = gr.Dataframe(
                    value=df_chain_2,
                    type="pandas",
                    interactive=False,
                    visible=True,
                )

            with gr.TabItem("📊 Domain"):
                with gr.Row():
                    with gr.Accordion("Citation", open=False):
                        citation_button = gr.Textbox(
                            value=CITATION_BUTTON_TEXT,
                            label=CITATION_BUTTON_LABEL,
                            lines=14,
                        )
        
                gr.Markdown(TABLE_INTRODUCTION)
                
                # 复选框
                # checkbox_group = gr.CheckboxGroup(
                #     choices=choices_from_csv,
                #     value=choices_from_csv,  # 默认全选
                #     label="Evaluation Dimension",
                #     interactive=True,
                # )
                
                # with gr.Row():
                #     checkbox_group
        
                # 显示 DataFrame
                data_component = gr.Dataframe(
                    value=df_domain,
                    type="pandas",
                    interactive=False,
                    visible=True,
                )
                
            # table info
            with gr.TabItem("📝 Submission", elem_id="mvbench-tab-table", id=3):
                gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
            
            # with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-i2v-tab-table", id=5):
            #     gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            # with gr.Row():
            #     gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text")

            # with gr.Row():
            #     gr.Markdown("Here is a required field", elem_classes="markdown-text")
            # with gr.Row():
            #     with gr.Column():
            #         model_name_textbox_i2v = gr.Textbox(
            #             label="Model name", placeholder="Required field"
            #             )
            #         revision_name_textbox_i2v = gr.Textbox(
            #             label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
            #         )
            #         access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")


            #     with gr.Column():
            #         model_link_i2v = gr.Textbox(
            #             label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
            #         )
            #         team_name_i2v = gr.Textbox(
            #             label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
            #         )
            #         contact_email_i2v = gr.Textbox(
            #             label="E-Mail(Will not be displayed)", placeholder="Required field"
            #         )
            # with gr.Row():
            #     gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
            # with gr.Row():
            #         release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
            #         model_resolution_i2v = gr.Textbox(label="resolution", )#placeholder="Width x Height")
            #         model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)")
            #         model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT")
            #         model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)")
            #         model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional")
            #         model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main')
            #         model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4')
            # with gr.Column():
            #     input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
            #     submit_button_i2v = gr.Button("Submit Eval")
            #     submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False)
            #     fail_textbox_i2v = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
                
    
            #     submission_result_i2v = gr.Markdown()
            #     submit_button_i2v.click(
            #         add_new_eval_i2v,
            #         inputs = [
            #             input_file_i2v,
            #             model_name_textbox_i2v,
            #             revision_name_textbox_i2v,
            #             model_link_i2v,
            #             team_name_i2v,
            #             contact_email_i2v,
            #             release_time_i2v,
            #             access_type_i2v,
            #             model_resolution_i2v,
            #             model_fps_i2v,
            #             model_frame_i2v,
            #             model_video_length_i2v,
            #             model_checkpoint_i2v,
            #             model_commit_id_i2v,
            #             model_video_format_i2v
            #         ],
            #         outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v]
            #     )



    # def refresh_data():
    #     value1 = get_baseline_df()
    #     return value1

    # with gr.Row():
    #     data_run = gr.Button("Refresh")
    #     # data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
    #     data_run.click(on_filter_model_size_method_change, outputs=data_component)


block.launch()