Spaces:
Running
Running
File size: 32,721 Bytes
32f55ce 1a5d9fe 32f55ce 1a5d9fe 32f55ce 1a5d9fe 32f55ce 1a5d9fe 32f55ce d4e8d2a 32f55ce d395bfe b3f8eaa 1c216bc 71f4d78 5af6229 e2054d4 a3a9b00 e2054d4 71f4d78 e2054d4 a3a9b00 e2054d4 71f4d78 1c216bc f1013fe 1c216bc f1013fe 1c216bc f1013fe 1c216bc 4bdf4c1 f1013fe 4bdf4c1 1c216bc d395bfe 1c216bc f1013fe e2054d4 4bdf4c1 e2054d4 4bdf4c1 e2054d4 4bdf4c1 e2054d4 4bdf4c1 32f55ce e2054d4 b3f8eaa 24986f4 b3f8eaa e2054d4 b41e3b2 e2054d4 4bdf4c1 32f55ce 4bdf4c1 32f55ce 4bdf4c1 32f55ce 93a22bf 32f55ce 1a5d9fe 32f55ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import os
import io
import gradio as gr
import pandas as pd
import json
import shutil
import tempfile
import datetime
import zipfile
import numpy as np
from constants import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
global data_component, filter_component
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval_i2v(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
team_name: str,
contact_email: str,
access_type: str,
model_publish: str,
model_resolution: str,
model_fps: str,
model_frame: str,
model_video_length: str,
model_checkpoint: str,
model_commit_id: str,
model_video_format: str
):
COLNAME2KEY={
"Video-Text Camera Motion":"camera_motion",
"Video-Image Subject Consistency": "i2v_subject",
"Video-Image Background Consistency": "i2v_background",
"Subject Consistency": "subject_consistency",
"Background Consistency": "background_consistency",
"Motion Smoothness": "motion_smoothness",
"Dynamic Degree": "dynamic_degree",
"Aesthetic Quality": "aesthetic_quality",
"Imaging Quality": "imaging_quality",
"Temporal Flickering": "temporal_flickering"
}
if input_file is None:
return "Error! Empty file!"
if model_link == '' or model_name_textbox == '' or contact_email == '':
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
upload_content = input_file
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
now = datetime.datetime.now()
update_time = now.strftime("%Y-%m-%d") # Capture update time
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
f.write(input_file)
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
csv_data = pd.read_csv(I2V_DIR)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox.replace(',',' ')
else:
model_name = revision_name_textbox.replace(',',' ')
model_name_list = csv_data['Model Name (clickable)']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
os.makedirs(filename, exist_ok=True)
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
zip_ref.extractall(filename)
upload_data = {}
for file in os.listdir(filename):
if file.startswith('.') or file.startswith('__'):
print(f"Skip the file: {file}")
continue
cur_file = os.path.join(filename, file)
if os.path.isdir(cur_file):
for subfile in os.listdir(cur_file):
if subfile.endswith(".json"):
with open(os.path.join(cur_file, subfile)) as ff:
cur_json = json.load(ff)
print(file, type(cur_json))
if isinstance(cur_json, dict):
print(cur_json.keys())
for key in cur_json:
upload_data[key] = cur_json[key][0]
print(f"{key}:{cur_json[key][0]}")
elif cur_file.endswith('json'):
with open(cur_file) as ff:
cur_json = json.load(ff)
print(file, type(cur_json))
if isinstance(cur_json, dict):
print(cur_json.keys())
for key in cur_json:
upload_data[key] = cur_json[key][0]
print(f"{key}:{cur_json[key][0]}")
# add new data
new_data = [model_name]
print('upload_data:', upload_data)
I2V_HEAD= ["Video-Text Camera Motion",
"Video-Image Subject Consistency",
"Video-Image Background Consistency",
"Subject Consistency",
"Background Consistency",
"Temporal Flickering",
"Motion Smoothness",
"Dynamic Degree",
"Aesthetic Quality",
"Imaging Quality" ]
for key in I2V_HEAD :
sub_key = COLNAME2KEY[key]
if sub_key in upload_data:
new_data.append(upload_data[sub_key])
else:
new_data.append(0)
if team_name =='' or 'vbench' in team_name.lower():
new_data.append("User Upload")
else:
new_data.append(team_name)
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
new_data.append(update_time) # Add the update time
new_data.append(team_name)
new_data.append(access_type)
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(I2V_DIR , index=False)
with open(INFO_DIR,'a') as f:
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
submission_repo.push_to_hub()
print("success update", model_name)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def get_normalized_df(df):
# final_score = df.drop('name', axis=1).sum(axis=1)
# df.insert(1, 'Overall Score', final_score)
normalize_df = df.copy().fillna(0.0)
for column in normalize_df.columns[1:-5]:
min_val = NORMALIZE_DIC[column]['Min']
max_val = NORMALIZE_DIC[column]['Max']
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
return normalize_df
def get_normalized_i2v_df(df):
normalize_df = df.copy().fillna(0.0)
for column in normalize_df.columns[1:-5]:
min_val = NORMALIZE_DIC_I2V[column]['Min']
max_val = NORMALIZE_DIC_I2V[column]['Max']
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
return normalize_df
def calculate_selected_score(df, selected_columns):
# selected_score = df[selected_columns].sum(axis=1)
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
return selected_score.fillna(0.0)
if selected_quality_score.isna().any().any():
return selected_semantic_score
if selected_semantic_score.isna().any().any():
return selected_quality_score
# print(selected_semantic_score,selected_quality_score )
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
return selected_score.fillna(0.0)
def calculate_selected_score_i2v(df, selected_columns):
# selected_score = df[selected_columns].sum(axis=1)
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
selected_I2V = [i for i in selected_columns if i in I2V_LIST]
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
return selected_score.fillna(0.0)
if selected_quality_score.isna().any().any():
return selected_i2v_score
if selected_i2v_score.isna().any().any():
return selected_quality_score
# print(selected_i2v_score,selected_quality_score )
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
return selected_score.fillna(0.0)
def get_final_score(df, selected_columns):
normalize_df = get_normalized_df(df)
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
try:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
except:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
if 'Total Score' in df:
df['Total Score'] = final_score
else:
df.insert(1, 'Total Score', final_score)
if 'Semantic Score' in df:
df['Semantic Score'] = semantic_score
else:
df.insert(2, 'Semantic Score', semantic_score)
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(3, 'Quality Score', quality_score)
selected_score = calculate_selected_score(normalize_df, selected_columns)
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
return df
def get_final_score_i2v(df, selected_columns):
normalize_df = get_normalized_i2v_df(df)
try:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
except:
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
if 'Total Score' in df:
df['Total Score'] = final_score
else:
df.insert(1, 'Total Score', final_score)
if 'I2V Score' in df:
df['I2V Score'] = i2v_score
else:
df.insert(2, 'I2V Score', i2v_score)
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(3, 'Quality Score', quality_score)
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns)
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
# df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.'
mask = df.iloc[:, 5:-5].isnull().any(axis=1)
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan
# df.fillna('N.A.', inplace=True)
return df
def get_final_score_quality(df, selected_columns):
normalize_df = get_normalized_df(df)
for name in normalize_df.drop('Model Name (clickable)', axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(1, 'Quality Score', quality_score)
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
return df
def get_baseline_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = get_final_score(df, checkbox_group.value)
df = df.sort_values(by="Selected Score", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
# print(present_columns)
df = df[present_columns]
# Add this line to display the results evaluated by VBench by default
df = df[df['Evaluated by'] == 'VBench Team']
df = convert_scores_to_percentage(df)
return df
def get_all_df(selected_columns, dir=CSV_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score_quality(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_i2v(selected_columns, dir=I2V_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score_i2v(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_long(selected_columns, dir=LONG_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def convert_scores_to_percentage(df):
# Operate on every column in the DataFrame (except the'name 'column)
if "Sampled by" in df.columns:
skip_col =3
else:
skip_col =1
print(df)
for column in df.columns[skip_col:]: # 假设第一列是'name'
# if df[column].isdigit():
# print(df[column])
# is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all()
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum()
if valid_numeric_count > 0:
df[column] = round(df[column] * 100,2)
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x)
# df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%'
return df
def choose_all_quailty():
return gr.update(value=QUALITY_LIST)
def choose_all_semantic():
return gr.update(value=SEMANTIC_LIST)
def disable_all():
return gr.update(value=[])
def enable_all():
return gr.update(value=TASK_INFO)
# select function
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False):
updated_data = get_all_df(selected_columns, CSV_DIR)
if vbench_team_sample:
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
if vbench_team_eval:
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
#print(updated_data)
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_quality(selected_columns):
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
#print(updated_data)
# columns:
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False):
updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
if vbench_team_sample:
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
# if vbench_team_eval:
# updated_data = updated_data[updated_data['Eval'] == 'VBench Team']
selected_columns = [item for item in I2V_TAB if item in selected_columns]
present_columns = MODEL_INFO_TAB_I2V + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False):
updated_data = get_all_df_long(selected_columns, LONG_DIR)
if vbench_team_sample:
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
if vbench_team_eval:
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Table 0
df_raw = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard.csv",
header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
df_domain = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/results.csv",
header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
df_chain_1 = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain1.csv",
# header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
df_chain_2 = pd.read_csv(
"https://huggingface.co/spaces/V-STaR-Bench/V-STaR-LeaderBoard/resolve/main/leaderboard_chain2.csv",
# header=[0, 1] # 告诉 pandas 前两行为表头
).map(lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else x)
# 2) 将 MultiIndex 列名转换为单层列名,例如 "Animals-mAM"
new_columns = []
for col_tuple in df_raw.columns:
# col_tuple 是形如 ("Animals", "mAM") 或 ("Model", nan) 的二元元组
domain = str(col_tuple[0]).strip() if pd.notnull(col_tuple[0]) else ""
metric = str(col_tuple[1]).strip() if pd.notnull(col_tuple[1]) else ""
if domain and metric:
new_columns.append(f"{domain}-{metric}")
else:
# 如果某一层为空,就只使用非空的那层
new_columns.append(domain or metric)
df_raw.columns = new_columns
# 如果第一列是 "Model-" 这种情况,可以进行一下修正
if df_raw.columns[0].endswith("-"):
df_raw.rename(columns={df_raw.columns[0]: "Model"}, inplace=True)
# 3) 用前面处理过的列来构建 checkbox 选项
# 假设第一列 "Model" 不需要放到 checkbox 里
all_columns = df_raw.columns.tolist()[1:]
choices_from_csv = [col.strip() for col in all_columns if col.strip()]
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("📊 V-STaR"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_raw,
type="pandas",
interactive=False,
visible=True,
)
with gr.TabItem("📊 Chain 1"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_chain_1,
type="pandas",
interactive=False,
visible=True,
)
with gr.TabItem("📊 Chain 2"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_chain_2,
type="pandas",
interactive=False,
visible=True,
)
with gr.TabItem("📊 Domain"):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
)
gr.Markdown(TABLE_INTRODUCTION)
# 复选框
# checkbox_group = gr.CheckboxGroup(
# choices=choices_from_csv,
# value=choices_from_csv, # 默认全选
# label="Evaluation Dimension",
# interactive=True,
# )
# with gr.Row():
# checkbox_group
# 显示 DataFrame
data_component = gr.Dataframe(
value=df_domain,
type="pandas",
interactive=False,
visible=True,
)
# table info
with gr.TabItem("📝 Submission", elem_id="mvbench-tab-table", id=3):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-i2v-tab-table", id=5):
# gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
# with gr.Row():
# gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text")
# with gr.Row():
# gr.Markdown("Here is a required field", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox_i2v = gr.Textbox(
# label="Model name", placeholder="Required field"
# )
# revision_name_textbox_i2v = gr.Textbox(
# label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
# )
# access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
# with gr.Column():
# model_link_i2v = gr.Textbox(
# label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
# )
# team_name_i2v = gr.Textbox(
# label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
# )
# contact_email_i2v = gr.Textbox(
# label="E-Mail(Will not be displayed)", placeholder="Required field"
# )
# with gr.Row():
# gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
# with gr.Row():
# release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
# model_resolution_i2v = gr.Textbox(label="resolution", )#placeholder="Width x Height")
# model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)")
# model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT")
# model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)")
# model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional")
# model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main')
# model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4')
# with gr.Column():
# input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
# submit_button_i2v = gr.Button("Submit Eval")
# submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False)
# fail_textbox_i2v = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
# submission_result_i2v = gr.Markdown()
# submit_button_i2v.click(
# add_new_eval_i2v,
# inputs = [
# input_file_i2v,
# model_name_textbox_i2v,
# revision_name_textbox_i2v,
# model_link_i2v,
# team_name_i2v,
# contact_email_i2v,
# release_time_i2v,
# access_type_i2v,
# model_resolution_i2v,
# model_fps_i2v,
# model_frame_i2v,
# model_video_length_i2v,
# model_checkpoint_i2v,
# model_commit_id_i2v,
# model_video_format_i2v
# ],
# outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v]
# )
# def refresh_data():
# value1 = get_baseline_df()
# return value1
# with gr.Row():
# data_run = gr.Button("Refresh")
# # data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
# data_run.click(on_filter_model_size_method_change, outputs=data_component)
block.launch() |