Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,968 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
)
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
interactive=False,
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
demo = gr.Blocks(css=custom_css)
|
93 |
-
with demo:
|
94 |
-
gr.HTML(TITLE)
|
95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
|
|
|
|
|
|
|
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
144 |
with gr.Row():
|
145 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with gr.Row():
|
148 |
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
label="Model
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
)
|
|
|
158 |
|
159 |
with gr.Column():
|
160 |
-
|
161 |
-
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
)
|
167 |
-
|
168 |
-
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
with gr.Row():
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
|
201 |
-
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
+
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
2 |
+
import os
|
3 |
+
import io
|
4 |
import gradio as gr
|
|
|
5 |
import pandas as pd
|
6 |
+
import json
|
7 |
+
import shutil
|
8 |
+
import tempfile
|
9 |
+
import datetime
|
10 |
+
import zipfile
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
from constants import *
|
15 |
+
from huggingface_hub import Repository
|
16 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
+
|
18 |
+
global data_component, filter_component
|
19 |
+
|
20 |
+
|
21 |
+
def upload_file(files):
|
22 |
+
file_paths = [file.name for file in files]
|
23 |
+
return file_paths
|
24 |
+
|
25 |
+
def add_new_eval(
|
26 |
+
input_file,
|
27 |
+
model_name_textbox: str,
|
28 |
+
revision_name_textbox: str,
|
29 |
+
model_link: str,
|
30 |
+
team_name: str,
|
31 |
+
contact_email: str,
|
32 |
+
access_type: str,
|
33 |
+
model_publish: str,
|
34 |
+
model_resolution: str,
|
35 |
+
model_fps: str,
|
36 |
+
model_frame: str,
|
37 |
+
model_video_length: str,
|
38 |
+
model_checkpoint: str,
|
39 |
+
model_commit_id: str,
|
40 |
+
model_video_format: str
|
41 |
+
):
|
42 |
+
if input_file is None:
|
43 |
+
return "Error! Empty file!"
|
44 |
+
if model_link == '' or model_name_textbox == '' or contact_email == '':
|
45 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
46 |
+
# upload_data=json.loads(input_file)
|
47 |
+
upload_content = input_file
|
48 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
49 |
+
submission_repo.git_pull()
|
50 |
+
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
51 |
+
|
52 |
+
now = datetime.datetime.now()
|
53 |
+
update_time = now.strftime("%Y-%m-%d") # Capture update time
|
54 |
+
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
|
55 |
+
f.write(input_file)
|
56 |
+
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
|
57 |
+
|
58 |
+
csv_data = pd.read_csv(CSV_DIR)
|
59 |
+
|
60 |
+
if revision_name_textbox == '':
|
61 |
+
col = csv_data.shape[0]
|
62 |
+
model_name = model_name_textbox.replace(',',' ')
|
63 |
+
else:
|
64 |
+
model_name = revision_name_textbox.replace(',',' ')
|
65 |
+
model_name_list = csv_data['Model Name (clickable)']
|
66 |
+
name_list = [name.split(']')[0][1:] for name in model_name_list]
|
67 |
+
if revision_name_textbox not in name_list:
|
68 |
+
col = csv_data.shape[0]
|
69 |
+
else:
|
70 |
+
col = name_list.index(revision_name_textbox)
|
71 |
+
if model_link == '':
|
72 |
+
model_name = model_name # no url
|
73 |
+
else:
|
74 |
+
model_name = '[' + model_name + '](' + model_link + ')'
|
75 |
+
|
76 |
+
os.makedirs(filename, exist_ok=True)
|
77 |
+
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
|
78 |
+
zip_ref.extractall(filename)
|
79 |
+
|
80 |
+
upload_data = {}
|
81 |
+
for file in os.listdir(filename):
|
82 |
+
if file.startswith('.') or file.startswith('__'):
|
83 |
+
print(f"Skip the file: {file}")
|
84 |
+
continue
|
85 |
+
cur_file = os.path.join(filename, file)
|
86 |
+
if os.path.isdir(cur_file):
|
87 |
+
for subfile in os.listdir(cur_file):
|
88 |
+
if subfile.endswith(".json"):
|
89 |
+
with open(os.path.join(cur_file, subfile)) as ff:
|
90 |
+
cur_json = json.load(ff)
|
91 |
+
print(file, type(cur_json))
|
92 |
+
if isinstance(cur_json, dict):
|
93 |
+
print(cur_json.keys())
|
94 |
+
for key in cur_json:
|
95 |
+
upload_data[key.replace('_',' ')] = cur_json[key][0]
|
96 |
+
print(f"{key}:{cur_json[key][0]}")
|
97 |
+
elif cur_file.endswith('json'):
|
98 |
+
with open(cur_file) as ff:
|
99 |
+
cur_json = json.load(ff)
|
100 |
+
print(file, type(cur_json))
|
101 |
+
if isinstance(cur_json, dict):
|
102 |
+
print(cur_json.keys())
|
103 |
+
for key in cur_json:
|
104 |
+
upload_data[key.replace('_',' ')] = cur_json[key][0]
|
105 |
+
print(f"{key}:{cur_json[key][0]}")
|
106 |
+
# add new data
|
107 |
+
new_data = [model_name]
|
108 |
+
print('upload_data:', upload_data)
|
109 |
+
for key in TASK_INFO:
|
110 |
+
if key in upload_data:
|
111 |
+
new_data.append(upload_data[key])
|
112 |
+
else:
|
113 |
+
new_data.append(0)
|
114 |
+
if team_name =='' or 'vbench' in team_name.lower():
|
115 |
+
new_data.append("User Upload")
|
116 |
+
else:
|
117 |
+
new_data.append(team_name)
|
118 |
+
|
119 |
+
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
|
120 |
+
new_data.append(update_time) # Add the update time
|
121 |
+
new_data.append(team_name)
|
122 |
+
new_data.append(access_type)
|
123 |
+
|
124 |
+
csv_data.loc[col] = new_data
|
125 |
+
csv_data = csv_data.to_csv(CSV_DIR, index=False)
|
126 |
+
with open(INFO_DIR,'a') as f:
|
127 |
+
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
|
128 |
+
submission_repo.push_to_hub()
|
129 |
+
print("success update", model_name)
|
130 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
131 |
+
|
132 |
+
def add_new_eval_i2v(
|
133 |
+
input_file,
|
134 |
+
model_name_textbox: str,
|
135 |
+
revision_name_textbox: str,
|
136 |
+
model_link: str,
|
137 |
+
team_name: str,
|
138 |
+
contact_email: str,
|
139 |
+
access_type: str,
|
140 |
+
model_publish: str,
|
141 |
+
model_resolution: str,
|
142 |
+
model_fps: str,
|
143 |
+
model_frame: str,
|
144 |
+
model_video_length: str,
|
145 |
+
model_checkpoint: str,
|
146 |
+
model_commit_id: str,
|
147 |
+
model_video_format: str
|
148 |
+
):
|
149 |
+
COLNAME2KEY={
|
150 |
+
"Video-Text Camera Motion":"camera_motion",
|
151 |
+
"Video-Image Subject Consistency": "i2v_subject",
|
152 |
+
"Video-Image Background Consistency": "i2v_background",
|
153 |
+
"Subject Consistency": "subject_consistency",
|
154 |
+
"Background Consistency": "background_consistency",
|
155 |
+
"Motion Smoothness": "motion_smoothness",
|
156 |
+
"Dynamic Degree": "dynamic_degree",
|
157 |
+
"Aesthetic Quality": "aesthetic_quality",
|
158 |
+
"Imaging Quality": "imaging_quality",
|
159 |
+
"Temporal Flickering": "temporal_flickering"
|
160 |
+
}
|
161 |
+
if input_file is None:
|
162 |
+
return "Error! Empty file!"
|
163 |
+
if model_link == '' or model_name_textbox == '' or contact_email == '':
|
164 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
165 |
+
|
166 |
+
upload_content = input_file
|
167 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
168 |
+
submission_repo.git_pull()
|
169 |
+
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
170 |
+
|
171 |
+
now = datetime.datetime.now()
|
172 |
+
update_time = now.strftime("%Y-%m-%d") # Capture update time
|
173 |
+
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
|
174 |
+
f.write(input_file)
|
175 |
+
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
|
176 |
+
|
177 |
+
csv_data = pd.read_csv(I2V_DIR)
|
178 |
+
|
179 |
+
if revision_name_textbox == '':
|
180 |
+
col = csv_data.shape[0]
|
181 |
+
model_name = model_name_textbox.replace(',',' ')
|
182 |
+
else:
|
183 |
+
model_name = revision_name_textbox.replace(',',' ')
|
184 |
+
model_name_list = csv_data['Model Name (clickable)']
|
185 |
+
name_list = [name.split(']')[0][1:] for name in model_name_list]
|
186 |
+
if revision_name_textbox not in name_list:
|
187 |
+
col = csv_data.shape[0]
|
188 |
+
else:
|
189 |
+
col = name_list.index(revision_name_textbox)
|
190 |
+
if model_link == '':
|
191 |
+
model_name = model_name # no url
|
192 |
+
else:
|
193 |
+
model_name = '[' + model_name + '](' + model_link + ')'
|
194 |
+
|
195 |
+
os.makedirs(filename, exist_ok=True)
|
196 |
+
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
|
197 |
+
zip_ref.extractall(filename)
|
198 |
+
|
199 |
+
upload_data = {}
|
200 |
+
for file in os.listdir(filename):
|
201 |
+
if file.startswith('.') or file.startswith('__'):
|
202 |
+
print(f"Skip the file: {file}")
|
203 |
+
continue
|
204 |
+
cur_file = os.path.join(filename, file)
|
205 |
+
if os.path.isdir(cur_file):
|
206 |
+
for subfile in os.listdir(cur_file):
|
207 |
+
if subfile.endswith(".json"):
|
208 |
+
with open(os.path.join(cur_file, subfile)) as ff:
|
209 |
+
cur_json = json.load(ff)
|
210 |
+
print(file, type(cur_json))
|
211 |
+
if isinstance(cur_json, dict):
|
212 |
+
print(cur_json.keys())
|
213 |
+
for key in cur_json:
|
214 |
+
upload_data[key] = cur_json[key][0]
|
215 |
+
print(f"{key}:{cur_json[key][0]}")
|
216 |
+
elif cur_file.endswith('json'):
|
217 |
+
with open(cur_file) as ff:
|
218 |
+
cur_json = json.load(ff)
|
219 |
+
print(file, type(cur_json))
|
220 |
+
if isinstance(cur_json, dict):
|
221 |
+
print(cur_json.keys())
|
222 |
+
for key in cur_json:
|
223 |
+
upload_data[key] = cur_json[key][0]
|
224 |
+
print(f"{key}:{cur_json[key][0]}")
|
225 |
+
# add new data
|
226 |
+
new_data = [model_name]
|
227 |
+
print('upload_data:', upload_data)
|
228 |
+
I2V_HEAD= ["Video-Text Camera Motion",
|
229 |
+
"Video-Image Subject Consistency",
|
230 |
+
"Video-Image Background Consistency",
|
231 |
+
"Subject Consistency",
|
232 |
+
"Background Consistency",
|
233 |
+
"Temporal Flickering",
|
234 |
+
"Motion Smoothness",
|
235 |
+
"Dynamic Degree",
|
236 |
+
"Aesthetic Quality",
|
237 |
+
"Imaging Quality" ]
|
238 |
+
for key in I2V_HEAD :
|
239 |
+
sub_key = COLNAME2KEY[key]
|
240 |
+
if sub_key in upload_data:
|
241 |
+
new_data.append(upload_data[sub_key])
|
242 |
+
else:
|
243 |
+
new_data.append(0)
|
244 |
+
if team_name =='' or 'vbench' in team_name.lower():
|
245 |
+
new_data.append("User Upload")
|
246 |
+
else:
|
247 |
+
new_data.append(team_name)
|
248 |
+
|
249 |
+
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
|
250 |
+
new_data.append(update_time) # Add the update time
|
251 |
+
new_data.append(team_name)
|
252 |
+
new_data.append(access_type)
|
253 |
+
|
254 |
+
csv_data.loc[col] = new_data
|
255 |
+
csv_data = csv_data.to_csv(I2V_DIR , index=False)
|
256 |
+
with open(INFO_DIR,'a') as f:
|
257 |
+
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
|
258 |
+
submission_repo.push_to_hub()
|
259 |
+
print("success update", model_name)
|
260 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
261 |
+
|
262 |
+
def get_normalized_df(df):
|
263 |
+
# final_score = df.drop('name', axis=1).sum(axis=1)
|
264 |
+
# df.insert(1, 'Overall Score', final_score)
|
265 |
+
normalize_df = df.copy().fillna(0.0)
|
266 |
+
for column in normalize_df.columns[1:-5]:
|
267 |
+
min_val = NORMALIZE_DIC[column]['Min']
|
268 |
+
max_val = NORMALIZE_DIC[column]['Max']
|
269 |
+
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
270 |
+
return normalize_df
|
271 |
+
|
272 |
+
def get_normalized_i2v_df(df):
|
273 |
+
normalize_df = df.copy().fillna(0.0)
|
274 |
+
for column in normalize_df.columns[1:-5]:
|
275 |
+
min_val = NORMALIZE_DIC_I2V[column]['Min']
|
276 |
+
max_val = NORMALIZE_DIC_I2V[column]['Max']
|
277 |
+
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
278 |
+
return normalize_df
|
279 |
+
|
280 |
+
|
281 |
+
def calculate_selected_score(df, selected_columns):
|
282 |
+
# selected_score = df[selected_columns].sum(axis=1)
|
283 |
+
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
|
284 |
+
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
|
285 |
+
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
|
286 |
+
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
|
287 |
+
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
|
288 |
+
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
289 |
+
return selected_score.fillna(0.0)
|
290 |
+
if selected_quality_score.isna().any().any():
|
291 |
+
return selected_semantic_score
|
292 |
+
if selected_semantic_score.isna().any().any():
|
293 |
+
return selected_quality_score
|
294 |
+
# print(selected_semantic_score,selected_quality_score )
|
295 |
+
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
296 |
+
return selected_score.fillna(0.0)
|
297 |
+
|
298 |
+
def calculate_selected_score_i2v(df, selected_columns):
|
299 |
+
# selected_score = df[selected_columns].sum(axis=1)
|
300 |
+
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
|
301 |
+
selected_I2V = [i for i in selected_columns if i in I2V_LIST]
|
302 |
+
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
|
303 |
+
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
|
304 |
+
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
|
305 |
+
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
306 |
+
return selected_score.fillna(0.0)
|
307 |
+
if selected_quality_score.isna().any().any():
|
308 |
+
return selected_i2v_score
|
309 |
+
if selected_i2v_score.isna().any().any():
|
310 |
+
return selected_quality_score
|
311 |
+
# print(selected_i2v_score,selected_quality_score )
|
312 |
+
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
313 |
+
return selected_score.fillna(0.0)
|
314 |
+
|
315 |
+
def get_final_score(df, selected_columns):
|
316 |
+
normalize_df = get_normalized_df(df)
|
317 |
+
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
318 |
+
try:
|
319 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
|
320 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
321 |
+
except:
|
322 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
|
323 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
324 |
+
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
|
325 |
+
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
|
326 |
+
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
327 |
+
if 'Total Score' in df:
|
328 |
+
df['Total Score'] = final_score
|
329 |
+
else:
|
330 |
+
df.insert(1, 'Total Score', final_score)
|
331 |
+
if 'Semantic Score' in df:
|
332 |
+
df['Semantic Score'] = semantic_score
|
333 |
+
else:
|
334 |
+
df.insert(2, 'Semantic Score', semantic_score)
|
335 |
+
if 'Quality Score' in df:
|
336 |
+
df['Quality Score'] = quality_score
|
337 |
+
else:
|
338 |
+
df.insert(3, 'Quality Score', quality_score)
|
339 |
+
selected_score = calculate_selected_score(normalize_df, selected_columns)
|
340 |
+
if 'Selected Score' in df:
|
341 |
+
df['Selected Score'] = selected_score
|
342 |
+
else:
|
343 |
+
df.insert(1, 'Selected Score', selected_score)
|
344 |
+
return df
|
345 |
+
|
346 |
+
def get_final_score_i2v(df, selected_columns):
|
347 |
+
normalize_df = get_normalized_i2v_df(df)
|
348 |
+
try:
|
349 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
|
350 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
351 |
+
except:
|
352 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
|
353 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
354 |
+
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
|
355 |
+
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
|
356 |
+
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
357 |
+
if 'Total Score' in df:
|
358 |
+
df['Total Score'] = final_score
|
359 |
+
else:
|
360 |
+
df.insert(1, 'Total Score', final_score)
|
361 |
+
if 'I2V Score' in df:
|
362 |
+
df['I2V Score'] = i2v_score
|
363 |
+
else:
|
364 |
+
df.insert(2, 'I2V Score', i2v_score)
|
365 |
+
if 'Quality Score' in df:
|
366 |
+
df['Quality Score'] = quality_score
|
367 |
+
else:
|
368 |
+
df.insert(3, 'Quality Score', quality_score)
|
369 |
+
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns)
|
370 |
+
if 'Selected Score' in df:
|
371 |
+
df['Selected Score'] = selected_score
|
372 |
+
else:
|
373 |
+
df.insert(1, 'Selected Score', selected_score)
|
374 |
+
# df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.'
|
375 |
+
mask = df.iloc[:, 5:-5].isnull().any(axis=1)
|
376 |
+
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan
|
377 |
+
# df.fillna('N.A.', inplace=True)
|
378 |
+
return df
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
def get_final_score_quality(df, selected_columns):
|
383 |
+
normalize_df = get_normalized_df(df)
|
384 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1):
|
385 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
386 |
+
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
|
387 |
+
|
388 |
+
if 'Quality Score' in df:
|
389 |
+
df['Quality Score'] = quality_score
|
390 |
+
else:
|
391 |
+
df.insert(1, 'Quality Score', quality_score)
|
392 |
+
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
|
393 |
+
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
|
394 |
+
if 'Selected Score' in df:
|
395 |
+
df['Selected Score'] = selected_score
|
396 |
+
else:
|
397 |
+
df.insert(1, 'Selected Score', selected_score)
|
398 |
+
return df
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
def get_baseline_df():
|
403 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
404 |
+
submission_repo.git_pull()
|
405 |
+
df = pd.read_csv(CSV_DIR)
|
406 |
+
df = get_final_score(df, checkbox_group.value)
|
407 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
408 |
+
present_columns = MODEL_INFO + checkbox_group.value
|
409 |
+
# print(present_columns)
|
410 |
+
df = df[present_columns]
|
411 |
+
# Add this line to display the results evaluated by VBench by default
|
412 |
+
df = df[df['Evaluated by'] == 'VBench Team']
|
413 |
+
df = convert_scores_to_percentage(df)
|
414 |
+
return df
|
415 |
+
|
416 |
+
def get_baseline_df_quality():
|
417 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
418 |
+
submission_repo.git_pull()
|
419 |
+
df = pd.read_csv(QUALITY_DIR)
|
420 |
+
df = get_final_score_quality(df, checkbox_group_quality.value)
|
421 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
422 |
+
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
|
423 |
+
df = df[present_columns]
|
424 |
+
df = convert_scores_to_percentage(df)
|
425 |
+
return df
|
426 |
+
|
427 |
+
def get_baseline_df_i2v():
|
428 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
429 |
+
submission_repo.git_pull()
|
430 |
+
df = pd.read_csv(I2V_DIR)
|
431 |
+
df = get_final_score_i2v(df, checkbox_group_i2v.value)
|
432 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
433 |
+
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value
|
434 |
+
# df = df[df["Sampled by"] == 'VBench Team']
|
435 |
+
df = df[present_columns]
|
436 |
+
df = convert_scores_to_percentage(df)
|
437 |
+
return df
|
438 |
+
|
439 |
+
def get_baseline_df_long():
|
440 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
441 |
+
submission_repo.git_pull()
|
442 |
+
df = pd.read_csv(LONG_DIR)
|
443 |
+
df = get_final_score(df, checkbox_group.value)
|
444 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
445 |
+
present_columns = MODEL_INFO + checkbox_group.value
|
446 |
+
# df = df[df["Sampled by"] == 'VBench Team']
|
447 |
+
df = df[present_columns]
|
448 |
+
df = convert_scores_to_percentage(df)
|
449 |
+
return df
|
450 |
+
|
451 |
+
def get_all_df(selected_columns, dir=CSV_DIR):
|
452 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
453 |
+
submission_repo.git_pull()
|
454 |
+
df = pd.read_csv(dir)
|
455 |
+
df = get_final_score(df, selected_columns)
|
456 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
457 |
+
return df
|
458 |
+
|
459 |
+
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
|
460 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
461 |
+
submission_repo.git_pull()
|
462 |
+
df = pd.read_csv(dir)
|
463 |
+
df = get_final_score_quality(df, selected_columns)
|
464 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
465 |
+
return df
|
466 |
+
|
467 |
+
def get_all_df_i2v(selected_columns, dir=I2V_DIR):
|
468 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
469 |
+
submission_repo.git_pull()
|
470 |
+
df = pd.read_csv(dir)
|
471 |
+
df = get_final_score_i2v(df, selected_columns)
|
472 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
473 |
+
return df
|
474 |
+
|
475 |
+
def get_all_df_long(selected_columns, dir=LONG_DIR):
|
476 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
477 |
+
submission_repo.git_pull()
|
478 |
+
df = pd.read_csv(dir)
|
479 |
+
df = get_final_score(df, selected_columns)
|
480 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
481 |
+
return df
|
482 |
+
|
483 |
+
|
484 |
+
def convert_scores_to_percentage(df):
|
485 |
+
# Operate on every column in the DataFrame (except the'name 'column)
|
486 |
+
if "Sampled by" in df.columns:
|
487 |
+
skip_col =3
|
488 |
+
else:
|
489 |
+
skip_col =1
|
490 |
+
print(df)
|
491 |
+
for column in df.columns[skip_col:]: # 假设第一列是'name'
|
492 |
+
# if df[column].isdigit():
|
493 |
+
# print(df[column])
|
494 |
+
# is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all()
|
495 |
+
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum()
|
496 |
+
if valid_numeric_count > 0:
|
497 |
+
df[column] = round(df[column] * 100,2)
|
498 |
+
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x)
|
499 |
+
# df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%'
|
500 |
+
return df
|
501 |
+
|
502 |
+
def choose_all_quailty():
|
503 |
+
return gr.update(value=QUALITY_LIST)
|
504 |
+
|
505 |
+
def choose_all_semantic():
|
506 |
+
return gr.update(value=SEMANTIC_LIST)
|
507 |
+
|
508 |
+
def disable_all():
|
509 |
+
return gr.update(value=[])
|
510 |
+
|
511 |
+
def enable_all():
|
512 |
+
return gr.update(value=TASK_INFO)
|
513 |
+
|
514 |
+
# select function
|
515 |
+
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False):
|
516 |
+
updated_data = get_all_df(selected_columns, CSV_DIR)
|
517 |
+
if vbench_team_sample:
|
518 |
+
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
519 |
+
if vbench_team_eval:
|
520 |
+
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
521 |
+
#print(updated_data)
|
522 |
+
# columns:
|
523 |
+
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
524 |
+
present_columns = MODEL_INFO + selected_columns
|
525 |
+
updated_data = updated_data[present_columns]
|
526 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
527 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
528 |
+
updated_headers = present_columns
|
529 |
+
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
|
530 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
531 |
+
# print(updated_data,present_columns,update_datatype)
|
532 |
+
filter_component = gr.components.Dataframe(
|
533 |
+
value=updated_data,
|
534 |
+
headers=updated_headers,
|
535 |
+
type="pandas",
|
536 |
+
datatype=update_datatype,
|
537 |
interactive=False,
|
538 |
+
visible=True,
|
539 |
+
)
|
540 |
+
return filter_component#.value
|
541 |
+
|
542 |
+
def on_filter_model_size_method_change_quality(selected_columns):
|
543 |
+
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
|
544 |
+
#print(updated_data)
|
545 |
+
# columns:
|
546 |
+
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
|
547 |
+
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
|
548 |
+
updated_data = updated_data[present_columns]
|
549 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
550 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
551 |
+
updated_headers = present_columns
|
552 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
553 |
+
# print(updated_data,present_columns,update_datatype)
|
554 |
+
filter_component = gr.components.Dataframe(
|
555 |
+
value=updated_data,
|
556 |
+
headers=updated_headers,
|
557 |
+
type="pandas",
|
558 |
+
datatype=update_datatype,
|
559 |
+
interactive=False,
|
560 |
+
visible=True,
|
561 |
+
)
|
562 |
+
return filter_component#.value
|
563 |
+
|
564 |
+
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False):
|
565 |
+
updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
|
566 |
+
if vbench_team_sample:
|
567 |
+
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
568 |
+
# if vbench_team_eval:
|
569 |
+
# updated_data = updated_data[updated_data['Eval'] == 'VBench Team']
|
570 |
+
selected_columns = [item for item in I2V_TAB if item in selected_columns]
|
571 |
+
present_columns = MODEL_INFO_TAB_I2V + selected_columns
|
572 |
+
updated_data = updated_data[present_columns]
|
573 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
574 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
575 |
+
updated_headers = present_columns
|
576 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers]
|
577 |
+
# print(updated_data,present_columns,update_datatype)
|
578 |
+
filter_component = gr.components.Dataframe(
|
579 |
+
value=updated_data,
|
580 |
+
headers=updated_headers,
|
581 |
+
type="pandas",
|
582 |
+
datatype=update_datatype,
|
583 |
+
interactive=False,
|
584 |
+
visible=True,
|
585 |
+
)
|
586 |
+
return filter_component#.value
|
587 |
|
588 |
+
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False):
|
589 |
+
updated_data = get_all_df_long(selected_columns, LONG_DIR)
|
590 |
+
if vbench_team_sample:
|
591 |
+
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
592 |
+
if vbench_team_eval:
|
593 |
+
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
594 |
+
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
595 |
+
present_columns = MODEL_INFO + selected_columns
|
596 |
+
updated_data = updated_data[present_columns]
|
597 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
598 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
599 |
+
updated_headers = present_columns
|
600 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
601 |
+
filter_component = gr.components.Dataframe(
|
602 |
+
value=updated_data,
|
603 |
+
headers=updated_headers,
|
604 |
+
type="pandas",
|
605 |
+
datatype=update_datatype,
|
606 |
+
interactive=False,
|
607 |
+
visible=True,
|
608 |
+
)
|
609 |
+
return filter_component#.value
|
610 |
+
|
611 |
+
block = gr.Blocks()
|
612 |
|
|
|
|
|
|
|
|
|
613 |
|
614 |
+
with block:
|
615 |
+
gr.Markdown(
|
616 |
+
LEADERBORAD_INTRODUCTION
|
617 |
+
)
|
618 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
619 |
+
# Table 0
|
620 |
+
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1):
|
621 |
+
with gr.Row():
|
622 |
+
with gr.Accordion("Citation", open=False):
|
623 |
+
citation_button = gr.Textbox(
|
624 |
+
value=CITATION_BUTTON_TEXT,
|
625 |
+
label=CITATION_BUTTON_LABEL,
|
626 |
+
elem_id="citation-button",
|
627 |
+
lines=14,
|
628 |
+
)
|
629 |
+
|
630 |
+
gr.Markdown(
|
631 |
+
TABLE_INTRODUCTION
|
632 |
+
)
|
633 |
+
with gr.Row():
|
634 |
+
with gr.Column(scale=0.2):
|
635 |
+
choosen_q = gr.Button("Select Quality Dimensions")
|
636 |
+
choosen_s = gr.Button("Select Semantic Dimensions")
|
637 |
+
# enable_b = gr.Button("Select All")
|
638 |
+
disable_b = gr.Button("Deselect All")
|
639 |
|
640 |
+
with gr.Column(scale=0.8):
|
641 |
+
vbench_team_filter = gr.Checkbox(
|
642 |
+
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
643 |
+
value=False,
|
644 |
+
interactive=True
|
645 |
+
)
|
646 |
+
vbench_validate_filter = gr.Checkbox(
|
647 |
+
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
648 |
+
value=True,
|
649 |
+
interactive=True
|
650 |
+
)
|
651 |
+
# selection for column part:
|
652 |
+
checkbox_group = gr.CheckboxGroup(
|
653 |
+
choices=TASK_INFO,
|
654 |
+
value=DEFAULT_INFO,
|
655 |
+
label="Evaluation Dimension",
|
656 |
+
interactive=True,
|
657 |
+
)
|
658 |
|
659 |
+
data_component = gr.components.Dataframe(
|
660 |
+
value=get_baseline_df,
|
661 |
+
headers=COLUMN_NAMES,
|
662 |
+
type="pandas",
|
663 |
+
datatype=DATA_TITILE_TYPE,
|
664 |
+
interactive=False,
|
665 |
+
visible=True,
|
666 |
+
height=700,
|
667 |
+
)
|
668 |
+
|
669 |
+
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component)
|
670 |
+
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component)
|
671 |
+
# enable_b.click(enable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter], outputs=data_component)
|
672 |
+
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
673 |
+
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
674 |
+
vbench_team_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
675 |
+
vbench_validate_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
676 |
+
# Table 1
|
677 |
+
with gr.TabItem("Video Quality", elem_id="vbench-tab-table", id=2):
|
678 |
+
with gr.Accordion("INSTRUCTION", open=False):
|
679 |
+
citation_button = gr.Textbox(
|
680 |
+
value=QUALITY_CLAIM_TEXT,
|
681 |
+
label="",
|
682 |
+
elem_id="quality-button",
|
683 |
+
lines=2,
|
684 |
+
)
|
685 |
+
with gr.Row():
|
686 |
+
with gr.Column(scale=1.0):
|
687 |
+
# selection for column part:
|
688 |
+
|
689 |
+
checkbox_group_quality = gr.CheckboxGroup(
|
690 |
+
choices=QUALITY_TAB,
|
691 |
+
value=QUALITY_TAB,
|
692 |
+
label="Evaluation Quality Dimension",
|
693 |
+
interactive=True,
|
694 |
+
)
|
695 |
|
696 |
+
data_component_quality = gr.components.Dataframe(
|
697 |
+
value=get_baseline_df_quality,
|
698 |
+
headers=COLUMN_NAMES_QUALITY,
|
699 |
+
type="pandas",
|
700 |
+
datatype=DATA_TITILE_TYPE,
|
701 |
+
interactive=False,
|
702 |
+
visible=True,
|
703 |
+
)
|
704 |
+
|
705 |
+
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
|
706 |
+
|
707 |
+
# Table i2v
|
708 |
+
with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=3):
|
709 |
+
with gr.Accordion("NOTE", open=False):
|
710 |
+
i2v_note_button = gr.Textbox(
|
711 |
+
value=I2V_CLAIM_TEXT,
|
712 |
+
label="",
|
713 |
+
elem_id="quality-button",
|
714 |
+
lines=3,
|
715 |
+
)
|
716 |
+
with gr.Row():
|
717 |
+
with gr.Column(scale=1.0):
|
718 |
+
# selection for column part:
|
719 |
+
with gr.Row():
|
720 |
+
vbench_team_filter_i2v = gr.Checkbox(
|
721 |
+
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
722 |
+
value=False,
|
723 |
+
interactive=True
|
724 |
+
)
|
725 |
+
vbench_validate_filter_i2v = gr.Checkbox(
|
726 |
+
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
727 |
+
value=False,
|
728 |
+
interactive=True
|
729 |
)
|
730 |
+
checkbox_group_i2v = gr.CheckboxGroup(
|
731 |
+
choices=I2V_TAB,
|
732 |
+
value=I2V_TAB,
|
733 |
+
label="Evaluation Quality Dimension",
|
734 |
+
interactive=True,
|
735 |
+
)
|
736 |
|
737 |
+
data_component_i2v = gr.components.Dataframe(
|
738 |
+
value=get_baseline_df_i2v,
|
739 |
+
headers=COLUMN_NAMES_I2V,
|
740 |
+
type="pandas",
|
741 |
+
datatype=I2V_TITILE_TYPE,
|
742 |
+
interactive=False,
|
743 |
+
visible=True,
|
744 |
+
)
|
745 |
+
|
746 |
+
checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
747 |
+
vbench_team_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
748 |
+
vbench_validate_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
749 |
+
|
750 |
+
with gr.TabItem("📊 VBench-Long", elem_id="vbench-tab-table", id=4):
|
751 |
with gr.Row():
|
752 |
+
with gr.Accordion("INSTRUCTION", open=False):
|
753 |
+
citation_button = gr.Textbox(
|
754 |
+
value=LONG_CLAIM_TEXT,
|
755 |
+
label="",
|
756 |
+
elem_id="long-ins-button",
|
757 |
+
lines=2,
|
758 |
+
)
|
759 |
+
|
760 |
+
gr.Markdown(
|
761 |
+
TABLE_INTRODUCTION
|
762 |
+
)
|
763 |
+
with gr.Row():
|
764 |
+
with gr.Column(scale=0.2):
|
765 |
+
choosen_q_long = gr.Button("Select Quality Dimensions")
|
766 |
+
choosen_s_long = gr.Button("Select Semantic Dimensions")
|
767 |
+
enable_b_long = gr.Button("Select All")
|
768 |
+
disable_b_long = gr.Button("Deselect All")
|
769 |
+
|
770 |
+
with gr.Column(scale=0.8):
|
771 |
+
with gr.Row():
|
772 |
+
vbench_team_filter_long = gr.Checkbox(
|
773 |
+
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
774 |
+
value=False,
|
775 |
+
interactive=True
|
776 |
+
)
|
777 |
+
vbench_validate_filter_long = gr.Checkbox(
|
778 |
+
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
779 |
+
value=False,
|
780 |
+
interactive=True
|
781 |
+
)
|
782 |
+
checkbox_group_long = gr.CheckboxGroup(
|
783 |
+
choices=TASK_INFO,
|
784 |
+
value=DEFAULT_INFO,
|
785 |
+
label="Evaluation Dimension",
|
786 |
+
interactive=True,
|
787 |
+
)
|
788 |
+
|
789 |
+
data_component = gr.components.Dataframe(
|
790 |
+
value=get_baseline_df_long,
|
791 |
+
headers=COLUMN_NAMES,
|
792 |
+
type="pandas",
|
793 |
+
datatype=DATA_TITILE_TYPE,
|
794 |
+
interactive=False,
|
795 |
+
visible=True,
|
796 |
+
height=700,
|
797 |
+
)
|
798 |
+
|
799 |
+
choosen_q_long.click(choose_all_quailty, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
800 |
+
choosen_s_long.click(choose_all_semantic, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
801 |
+
enable_b_long.click(enable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
802 |
+
disable_b_long.click(disable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
803 |
+
checkbox_group_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
804 |
+
vbench_team_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
805 |
+
vbench_validate_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
806 |
+
|
807 |
+
# table info
|
808 |
+
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=5):
|
809 |
+
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
|
810 |
+
|
811 |
+
# table submission
|
812 |
+
with gr.TabItem("🚀 [T2V]Submit here! ", elem_id="mvbench-tab-table", id=6):
|
813 |
+
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
814 |
|
815 |
+
with gr.Row():
|
816 |
+
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
817 |
+
|
818 |
+
with gr.Row():
|
819 |
+
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
|
820 |
+
|
821 |
+
with gr.Row():
|
822 |
+
gr.Markdown("Here is a required field", elem_classes="markdown-text")
|
823 |
with gr.Row():
|
824 |
with gr.Column():
|
825 |
+
model_name_textbox = gr.Textbox(
|
826 |
+
label="Model name", placeholder="Required field"
|
827 |
+
)
|
828 |
+
revision_name_textbox = gr.Textbox(
|
829 |
+
label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
|
|
|
|
|
|
|
830 |
)
|
831 |
+
access_type = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
|
832 |
|
833 |
with gr.Column():
|
834 |
+
model_link = gr.Textbox(
|
835 |
+
label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
|
|
|
|
|
|
|
|
|
836 |
)
|
837 |
+
team_name = gr.Textbox(
|
838 |
+
label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
|
|
|
|
|
|
|
|
|
839 |
)
|
840 |
+
contact_email = gr.Textbox(
|
841 |
+
label="E-Mail(Will not be displayed)", placeholder="Required field"
|
842 |
+
)
|
843 |
+
with gr.Row():
|
844 |
+
gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
|
845 |
+
with gr.Row():
|
846 |
+
release_time = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
|
847 |
+
model_resolution = gr.Textbox(label="resolution", placeholder="Width x Height")
|
848 |
+
model_fps = gr.Textbox(label="model fps", placeholder="FPS(int)")
|
849 |
+
model_frame = gr.Textbox(label="model frame count", placeholder="INT")
|
850 |
+
model_video_length = gr.Textbox(label="model video length", placeholder="float(2.0)")
|
851 |
+
model_checkpoint = gr.Textbox(label="model checkpoint", placeholder="optional")
|
852 |
+
model_commit_id = gr.Textbox(label="github commit id", placeholder='main')
|
853 |
+
model_video_format = gr.Textbox(label="pipeline format", placeholder='mp4')
|
854 |
+
with gr.Column():
|
855 |
+
input_file = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
|
856 |
+
submit_button = gr.Button("Submit Eval")
|
857 |
+
submit_succ_button = gr.Markdown("Submit Success! Please press refresh and return to LeaderBoard!", visible=False)
|
858 |
+
fail_textbox = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
|
859 |
+
|
860 |
+
|
861 |
+
submission_result = gr.Markdown()
|
862 |
+
submit_button.click(
|
863 |
+
add_new_eval,
|
864 |
+
inputs = [
|
865 |
+
input_file,
|
866 |
+
model_name_textbox,
|
867 |
+
revision_name_textbox,
|
868 |
+
model_link,
|
869 |
+
team_name,
|
870 |
+
contact_email,
|
871 |
+
release_time,
|
872 |
+
access_type,
|
873 |
+
model_resolution,
|
874 |
+
model_fps,
|
875 |
+
model_frame,
|
876 |
+
model_video_length,
|
877 |
+
model_checkpoint,
|
878 |
+
model_commit_id,
|
879 |
+
model_video_format
|
880 |
+
],
|
881 |
+
outputs=[submit_button, submit_succ_button, fail_textbox]
|
882 |
+
)
|
883 |
+
|
884 |
+
with gr.TabItem("🚀 [I2V]Submit here! ", elem_id="mvbench-i2v-tab-table", id=7):
|
885 |
+
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
886 |
+
|
887 |
+
with gr.Row():
|
888 |
+
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
889 |
+
|
890 |
+
with gr.Row():
|
891 |
+
gr.Markdown("# ✉️✨ Submit your i2v model evaluation json file here!", elem_classes="markdown-text")
|
892 |
+
|
893 |
+
with gr.Row():
|
894 |
+
gr.Markdown("Here is a required field", elem_classes="markdown-text")
|
895 |
+
with gr.Row():
|
896 |
+
with gr.Column():
|
897 |
+
model_name_textbox_i2v = gr.Textbox(
|
898 |
+
label="Model name", placeholder="Required field"
|
899 |
+
)
|
900 |
+
revision_name_textbox_i2v = gr.Textbox(
|
901 |
+
label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
|
902 |
+
)
|
903 |
+
access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
|
904 |
+
|
905 |
+
|
906 |
+
with gr.Column():
|
907 |
+
model_link_i2v = gr.Textbox(
|
908 |
+
label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
|
909 |
+
)
|
910 |
+
team_name_i2v = gr.Textbox(
|
911 |
+
label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
|
912 |
+
)
|
913 |
+
contact_email_i2v = gr.Textbox(
|
914 |
+
label="E-Mail(Will not be displayed)", placeholder="Required field"
|
915 |
+
)
|
916 |
+
with gr.Row():
|
917 |
+
gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
|
918 |
+
with gr.Row():
|
919 |
+
release_time_i2v = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
|
920 |
+
model_resolution_i2v = gr.Textbox(label="resolution", placeholder="Width x Height")
|
921 |
+
model_fps_i2v = gr.Textbox(label="model fps", placeholder="FPS(int)")
|
922 |
+
model_frame_i2v = gr.Textbox(label="model frame count", placeholder="INT")
|
923 |
+
model_video_length_i2v = gr.Textbox(label="model video length", placeholder="float(2.0)")
|
924 |
+
model_checkpoint_i2v = gr.Textbox(label="model checkpoint", placeholder="optional")
|
925 |
+
model_commit_id_i2v = gr.Textbox(label="github commit id", placeholder='main')
|
926 |
+
model_video_format_i2v = gr.Textbox(label="pipeline format", placeholder='mp4')
|
927 |
+
with gr.Column():
|
928 |
+
input_file_i2v = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
|
929 |
+
submit_button_i2v = gr.Button("Submit Eval")
|
930 |
+
submit_succ_button_i2v = gr.Markdown("Submit Success! Please press refresh and retfurn to LeaderBoard!", visible=False)
|
931 |
+
fail_textbox_i2v = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
|
932 |
+
|
933 |
+
|
934 |
+
submission_result_i2v = gr.Markdown()
|
935 |
+
submit_button_i2v.click(
|
936 |
+
add_new_eval_i2v,
|
937 |
+
inputs = [
|
938 |
+
input_file_i2v,
|
939 |
+
model_name_textbox_i2v,
|
940 |
+
revision_name_textbox_i2v,
|
941 |
+
model_link_i2v,
|
942 |
+
team_name_i2v,
|
943 |
+
contact_email_i2v,
|
944 |
+
release_time_i2v,
|
945 |
+
access_type_i2v,
|
946 |
+
model_resolution_i2v,
|
947 |
+
model_fps_i2v,
|
948 |
+
model_frame_i2v,
|
949 |
+
model_video_length_i2v,
|
950 |
+
model_checkpoint_i2v,
|
951 |
+
model_commit_id_i2v,
|
952 |
+
model_video_format_i2v
|
953 |
+
],
|
954 |
+
outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v]
|
955 |
+
)
|
956 |
+
|
957 |
+
|
958 |
+
|
959 |
+
def refresh_data():
|
960 |
+
value1 = get_baseline_df()
|
961 |
+
return value1
|
962 |
|
963 |
with gr.Row():
|
964 |
+
data_run = gr.Button("Refresh")
|
965 |
+
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
|
966 |
+
|
|
|
|
|
|
|
|
|
|
|
967 |
|
968 |
+
block.launch()
|
|
|
|
|
|