Spaces:
Runtime error
Runtime error
File size: 4,540 Bytes
e669abf f387393 1abbe27 e669abf 0e20e10 e669abf 0a1e37c e669abf f1c8fb6 1abbe27 e669abf 0a1e37c f1c8fb6 1abbe27 e669abf f387393 0a1e37c f1c8fb6 0a1e37c f1c8fb6 0a1e37c 1abbe27 f1c8fb6 e669abf 82818a6 e669abf f1c8fb6 e669abf d2c6fef e669abf 0a1e37c aac4588 6981fa0 0a1e37c f1c8fb6 1abbe27 e669abf f1c8fb6 e669abf f1c8fb6 e669abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
from transformers_interpret import SequenceClassificationExplainer
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
# modelc = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").cuda
cls_explainer = SequenceClassificationExplainer(
model,
tokenizer)
# # define a prediction function
# def f(x):
# tv = torch.tensor([tokenizer.encode(v, padding='max_length', max_length=500, truncation=True) for v in x]).cuda()
# outputs = modelc(tv)[0].detach().cpu().numpy()
# scores = (np.exp(outputs).T / np.exp(outputs).sum(-1)).T
# val = sp.special.logit(scores[:,1]) # use one vs rest logit units
# return val
def adr_predict(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = tf.nn.softmax(scores)
# # build a pipeline object to do predictions
# pred = transformers.pipeline("text-classification", model=model,
# tokenizer=tokenizer, device=0, return_all_scores=True)
# explainer = shap.Explainer(pred)
# shap_values = explainer([x])
# shap_plot = shap.plots.text(shap_values)
word_attributions = cls_explainer(str(x))
# scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
letter = []
score = []
for i in word_attributions:
if i[1]>0.5:
a = "++"
elif (i[1]<=0.5) and (i[1]>0.1):
a = "+"
elif (i[1]>=-0.5) and (i[1]<-0.1):
a = "-"
elif i[1]<-0.5:
a = "--"
else:
a = "NA"
letter.append(i[0])
score.append(a)
word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
# # SHAP:
# # build an explainer using a token masker
# explainer = shap.Explainer(f, tokenizer)
# shap_values = explainer(str(x), fixed_context=1)
# scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
# # plot the first sentence's explanation
# # plt = shap.plots.text(shap_values[0],display=False)
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, word_attributions
# ,scores
def main(text):
text = str(text).lower()
obj = adr_predict(text)
return obj[0],obj[1]
# ,obj[2]
title = "Welcome to **ADR Detector** 🪐"
description1 = """
This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons.
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
text = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
# impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style(
# color_map={"+++": "royalblue","++": "cornflowerblue",
# "+": "lightsteelblue", "NA":"white"})
# NER = gr.HTML(label = 'NER:')
intp = gr.HighlightedText(label="Word Scores",
combine_adjacent=False).style(color_map={"++": "darkred","+": "red",
"--": "darkblue",
"-": "blue", "NA":"white"})
# interpretation = gr.components.Interpretation(text)
submit_btn.click(
main,
[text],
[label,intp
# ,interpretation
], api_name="adr"
)
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,intp
# ,interpretation
], main, cache_examples=True)
demo.launch()
|