paragon-analytics commited on
Commit
0a1e37c
·
1 Parent(s): 57be134

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -10
app.py CHANGED
@@ -8,23 +8,50 @@ from transformers import RobertaTokenizer, RobertaModel
8
  from transformers import AutoModelForSequenceClassification
9
  from transformers import TFAutoModelForSequenceClassification
10
  from transformers import AutoTokenizer
 
11
 
12
  tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
13
  model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
14
 
 
 
 
 
15
  def adr_predict(x):
16
  encoded_input = tokenizer(x, return_tensors='pt')
17
  output = model(**encoded_input)
18
  scores = output[0][0].detach().numpy()
19
  scores = tf.nn.softmax(scores)
20
 
21
- # build a pipeline object to do predictions
22
- pred = transformers.pipeline("text-classification", model=model,
23
- tokenizer=tokenizer, device=0, return_all_scores=True)
24
- explainer = shap.Explainer(pred)
25
- shap_values = explainer([x])
26
- shap_plot = shap.plots.text(shap_values)
27
- return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, shap_plot
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  def main(text):
30
  text = str(text).lower()
@@ -50,15 +77,19 @@ with gr.Blocks(title=title) as demo:
50
  # color_map={"+++": "royalblue","++": "cornflowerblue",
51
  # "+": "lightsteelblue", "NA":"white"})
52
  # NER = gr.HTML(label = 'NER:')
53
- shap_plot = gr.HighlightedText(label="Word Scores",combine_adjacent=False)
 
 
 
 
54
 
55
  submit_btn.click(
56
  main,
57
  [text],
58
- [label,shap_plot], api_name="adr"
59
  )
60
 
61
  gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
62
- gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,shap_plot], main, cache_examples=True)
63
 
64
  demo.launch()
 
8
  from transformers import AutoModelForSequenceClassification
9
  from transformers import TFAutoModelForSequenceClassification
10
  from transformers import AutoTokenizer
11
+ from transformers_interpret import SequenceClassificationExplainer
12
 
13
  tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
14
  model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
15
 
16
+ cls_explainer = SequenceClassificationExplainer(
17
+ model,
18
+ tokenizer)
19
+
20
  def adr_predict(x):
21
  encoded_input = tokenizer(x, return_tensors='pt')
22
  output = model(**encoded_input)
23
  scores = output[0][0].detach().numpy()
24
  scores = tf.nn.softmax(scores)
25
 
26
+ # # build a pipeline object to do predictions
27
+ # pred = transformers.pipeline("text-classification", model=model,
28
+ # tokenizer=tokenizer, device=0, return_all_scores=True)
29
+ # explainer = shap.Explainer(pred)
30
+ # shap_values = explainer([x])
31
+ # shap_plot = shap.plots.text(shap_values)
32
+
33
+ word_attributions = cls_explainer(str(x))
34
+ letter = []
35
+ score = []
36
+ for i in word_attributions:
37
+ if i[1]>0.5:
38
+ a = "++"
39
+ elif (i[1]<=0.5) and (i[1]>0.1):
40
+ a = "+"
41
+ elif (i[1]>=-0.5) and (i[1]<-0.1):
42
+ a = "-"
43
+ elif i[1]<-0.5:
44
+ a = "--"
45
+ else:
46
+ a = "NA"
47
+
48
+ letter.append(i[0])
49
+ score.append(a)
50
+
51
+ word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
52
+
53
+
54
+ return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, word_attributions
55
 
56
  def main(text):
57
  text = str(text).lower()
 
77
  # color_map={"+++": "royalblue","++": "cornflowerblue",
78
  # "+": "lightsteelblue", "NA":"white"})
79
  # NER = gr.HTML(label = 'NER:')
80
+ intp = gr.HighlightedText(label="Word Scores",
81
+ combine_adjacent=False).style(color_map={"++": "darkgreen","+": "green",
82
+ "--": "darkred",
83
+ "-": "red", "NA":"white"})
84
+
85
 
86
  submit_btn.click(
87
  main,
88
  [text],
89
+ [label,intp], api_name="adr"
90
  )
91
 
92
  gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
93
+ gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,intp], main, cache_examples=True)
94
 
95
  demo.launch()