Spaces:
Runtime error
Runtime error
Commit
·
0a1e37c
1
Parent(s):
57be134
Update app.py
Browse files
app.py
CHANGED
@@ -8,23 +8,50 @@ from transformers import RobertaTokenizer, RobertaModel
|
|
8 |
from transformers import AutoModelForSequenceClassification
|
9 |
from transformers import TFAutoModelForSequenceClassification
|
10 |
from transformers import AutoTokenizer
|
|
|
11 |
|
12 |
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
|
13 |
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
|
14 |
|
|
|
|
|
|
|
|
|
15 |
def adr_predict(x):
|
16 |
encoded_input = tokenizer(x, return_tensors='pt')
|
17 |
output = model(**encoded_input)
|
18 |
scores = output[0][0].detach().numpy()
|
19 |
scores = tf.nn.softmax(scores)
|
20 |
|
21 |
-
# build a pipeline object to do predictions
|
22 |
-
pred = transformers.pipeline("text-classification", model=model,
|
23 |
-
|
24 |
-
explainer = shap.Explainer(pred)
|
25 |
-
shap_values = explainer([x])
|
26 |
-
shap_plot = shap.plots.text(shap_values)
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def main(text):
|
30 |
text = str(text).lower()
|
@@ -50,15 +77,19 @@ with gr.Blocks(title=title) as demo:
|
|
50 |
# color_map={"+++": "royalblue","++": "cornflowerblue",
|
51 |
# "+": "lightsteelblue", "NA":"white"})
|
52 |
# NER = gr.HTML(label = 'NER:')
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
submit_btn.click(
|
56 |
main,
|
57 |
[text],
|
58 |
-
[label,
|
59 |
)
|
60 |
|
61 |
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
|
62 |
-
gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,
|
63 |
|
64 |
demo.launch()
|
|
|
8 |
from transformers import AutoModelForSequenceClassification
|
9 |
from transformers import TFAutoModelForSequenceClassification
|
10 |
from transformers import AutoTokenizer
|
11 |
+
from transformers_interpret import SequenceClassificationExplainer
|
12 |
|
13 |
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
|
14 |
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
|
15 |
|
16 |
+
cls_explainer = SequenceClassificationExplainer(
|
17 |
+
model,
|
18 |
+
tokenizer)
|
19 |
+
|
20 |
def adr_predict(x):
|
21 |
encoded_input = tokenizer(x, return_tensors='pt')
|
22 |
output = model(**encoded_input)
|
23 |
scores = output[0][0].detach().numpy()
|
24 |
scores = tf.nn.softmax(scores)
|
25 |
|
26 |
+
# # build a pipeline object to do predictions
|
27 |
+
# pred = transformers.pipeline("text-classification", model=model,
|
28 |
+
# tokenizer=tokenizer, device=0, return_all_scores=True)
|
29 |
+
# explainer = shap.Explainer(pred)
|
30 |
+
# shap_values = explainer([x])
|
31 |
+
# shap_plot = shap.plots.text(shap_values)
|
32 |
+
|
33 |
+
word_attributions = cls_explainer(str(x))
|
34 |
+
letter = []
|
35 |
+
score = []
|
36 |
+
for i in word_attributions:
|
37 |
+
if i[1]>0.5:
|
38 |
+
a = "++"
|
39 |
+
elif (i[1]<=0.5) and (i[1]>0.1):
|
40 |
+
a = "+"
|
41 |
+
elif (i[1]>=-0.5) and (i[1]<-0.1):
|
42 |
+
a = "-"
|
43 |
+
elif i[1]<-0.5:
|
44 |
+
a = "--"
|
45 |
+
else:
|
46 |
+
a = "NA"
|
47 |
+
|
48 |
+
letter.append(i[0])
|
49 |
+
score.append(a)
|
50 |
+
|
51 |
+
word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
|
52 |
+
|
53 |
+
|
54 |
+
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, word_attributions
|
55 |
|
56 |
def main(text):
|
57 |
text = str(text).lower()
|
|
|
77 |
# color_map={"+++": "royalblue","++": "cornflowerblue",
|
78 |
# "+": "lightsteelblue", "NA":"white"})
|
79 |
# NER = gr.HTML(label = 'NER:')
|
80 |
+
intp = gr.HighlightedText(label="Word Scores",
|
81 |
+
combine_adjacent=False).style(color_map={"++": "darkgreen","+": "green",
|
82 |
+
"--": "darkred",
|
83 |
+
"-": "red", "NA":"white"})
|
84 |
+
|
85 |
|
86 |
submit_btn.click(
|
87 |
main,
|
88 |
[text],
|
89 |
+
[label,intp], api_name="adr"
|
90 |
)
|
91 |
|
92 |
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
|
93 |
+
gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,intp], main, cache_examples=True)
|
94 |
|
95 |
demo.launch()
|