Spaces:
Runtime error
Runtime error
File size: 4,245 Bytes
e669abf f387393 1abbe27 e669abf 0e20e10 e669abf 0a1e37c e669abf 1abbe27 e669abf 0a1e37c 1abbe27 e669abf f387393 0a1e37c 1abbe27 98c11b8 1abbe27 98c11b8 0a1e37c 1abbe27 98c11b8 e669abf 82818a6 e669abf 1abbe27 e669abf d2c6fef e669abf 0a1e37c aac4588 6981fa0 0a1e37c 98c11b8 1abbe27 e669abf 98c11b8 e669abf 98c11b8 e669abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
from transformers_interpret import SequenceClassificationExplainer
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
modelc = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").cuda
cls_explainer = SequenceClassificationExplainer(
model,
tokenizer)
# define a prediction function
def f(x):
tv = torch.tensor([tokenizer.encode(v, padding='max_length', max_length=500, truncation=True) for v in x]).cuda()
outputs = modelc(tv)[0].detach().cpu().numpy()
scores = (np.exp(outputs).T / np.exp(outputs).sum(-1)).T
val = sp.special.logit(scores[:,1]) # use one vs rest logit units
return val
def adr_predict(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = tf.nn.softmax(scores)
# # build a pipeline object to do predictions
# pred = transformers.pipeline("text-classification", model=model,
# tokenizer=tokenizer, device=0, return_all_scores=True)
# explainer = shap.Explainer(pred)
# shap_values = explainer([x])
# shap_plot = shap.plots.text(shap_values)
word_attributions = cls_explainer(str(x))
letter = []
score = []
for i in word_attributions:
if i[1]>0.5:
a = "++"
elif (i[1]<=0.5) and (i[1]>0.1):
a = "+"
elif (i[1]>=-0.5) and (i[1]<-0.1):
a = "-"
elif i[1]<-0.5:
a = "--"
else:
a = "NA"
letter.append(i[0])
score.append(a)
word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
# SHAP:
# build an explainer using a token masker
explainer = shap.Explainer(f, tokenizer)
shap_values = explainer(str(x), fixed_context=1)
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
# plot the first sentence's explanation
# plt = shap.plots.text(shap_values[0],display=False)
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, word_attributions,scores
def main(text):
text = str(text).lower()
obj = adr_predict(text)
return obj[0],obj[1],obj[2]
title = "Welcome to **ADR Detector** 🪐"
description1 = """
This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons.
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
text = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
# impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style(
# color_map={"+++": "royalblue","++": "cornflowerblue",
# "+": "lightsteelblue", "NA":"white"})
# NER = gr.HTML(label = 'NER:')
intp = gr.HighlightedText(label="Word Scores",
combine_adjacent=False).style(color_map={"++": "darkred","+": "red",
"--": "darkblue",
"-": "blue", "NA":"white"})
interpretation = gr.components.Interpretation(text)
submit_btn.click(
main,
[text],
[label,intp,interpretation], api_name="adr"
)
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,intp,interpretation], main, cache_examples=True)
demo.launch()
|