File size: 4,508 Bytes
e669abf
 
f387393
1abbe27
 
e669abf
 
0e20e10
1b8c45e
e669abf
 
 
dc8ab1d
 
f057421
998e5ed
 
 
 
e669abf
9cc7c4e
 
e669abf
9cc7c4e
 
 
 
 
 
2888c51
9cc7c4e
7f48a24
 
68fbe9e
 
 
 
0e1a661
68fbe9e
4dfba43
 
 
 
55ecc4c
7c8cdc0
 
 
cbc546e
 
7f48a24
e669abf
579be1d
e669abf
 
 
518ac36
4a73816
3a53d21
7f48a24
c35e70a
1460b1f
7c8cdc0
cbc546e
 
 
 
 
24692bc
 
 
6f88e98
24692bc
cbc546e
 
 
 
 
 
 
 
 
 
 
 
 
 
518ac36
7c8cdc0
518ac36
e669abf
42c5082
 
e669abf
7c8cdc0
e669abf
 
cde5ee9
e669abf
 
 
 
 
42c5082
e669abf
 
cde5ee9
c78f4ac
 
 
 
cbc546e
e669abf
cde5ee9
 
4dfba43
55ecc4c
e669abf
 
42c5082
9cc7c4e
7c8cdc0
f1c8fb6
e669abf
3553235
 
aa5b3ba
cbc546e
 
7c8cdc0
e669abf
cbc546e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification

import matplotlib.pyplot as plt
import sys
import csv

csv.field_size_limit(sys.maxsize)

device = "cuda:0" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")  
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)

# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model, 
                             tokenizer=tokenizer, return_all_scores=True)

explainer = shap.Explainer(pred)

##
classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")

def med_score(x):
    label = x['label']
    score_1 = x['score']
    return round(score_1,3)

def sym_score(x):
    label2sym= x['label']
    score_1sym = x['score']
    return round(score_1sym,3)

ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")

ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
#

def adr_predict(x):
    encoded_input = tokenizer(x, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = tf.nn.softmax(scores)
   
    shap_values = explainer([str(x).lower()])
    local_plot = shap.plots.text(shap_values[0], display=False)

    med = med_score(classifier(x+str(", There is a medication."))[0])
    sym = sym_score(classifier(x+str(", There is a symptom."))[0])

    res = ner_pipe(x)
    
    entity_colors = {
    'Severity': 'red',
    'Sign_symptom': 'green',
    'Medication': 'blue',
    'Age': 'yellow',
    'Sex':'yellow',
    'Diagnostic_procedure':'gray',
    'Biological_structure':'black'}

    htext = ""
    prev_end = 0

    for entity in res:
        start = entity['start']
        end = entity['end']
        word = entity['word'].replace("##", "")
        color = entity_colors[entity['entity_group']]
        
        htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
        prev_end = end

    htext += x[prev_end:]
   
    return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)},htext


def main(prob1):
    text = str(prob1).lower()
    obj = adr_predict(text)
    return obj[0],obj[1],obj[2],obj[3],obj[4]

title = "Welcome to **ADR Detector** 🪐"
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
    submit_btn = gr.Button("Analyze")

    with gr.Row():
        
        with gr.Column(visible=True) as output_col:
            label = gr.Label(label = "Predicted Label")
            local_plot = gr.HTML(label = 'Shap:')
            htext = gr.HTML(label="NER")

        with gr.Column(visible=True) as output_col:
            med = gr.Label(label = "Contains Medication")
            sym = gr.Label(label = "Contains Symptoms")
            
    submit_btn.click(
        main,
        [prob1],
        [label
         ,local_plot, med, sym, htext
        ], api_name="adr"
    )
    
    with gr.Row():
        gr.Markdown("### Click on any of the examples below to see how it works:")
        gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
                     ["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]], 
                    [prob1], [label,local_plot, med, sym,htext], main, cache_examples=True)
    
demo.launch()