paragon-analytics commited on
Commit
4dfba43
·
1 Parent(s): 998e5ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -36,10 +36,10 @@ def med_score(x):
36
  score_1 = x['score']
37
  return round(score_1,3)
38
 
39
- # def sym_score(x):
40
- # label2sym= x['label']
41
- # score_1sym = x['score']
42
- # return round(score_1sym,3)
43
 
44
  ##
45
 
@@ -55,15 +55,13 @@ def adr_predict(x):
55
  med = med_score(classifier(x+str(", There is a medication."))[0])
56
  # sym = sym_score(classifier(x+str(", There is a symptom."))[0])
57
 
58
- return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}
59
- # , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
60
 
61
 
62
  def main(prob1):
63
  text = str(prob1).lower()
64
  obj = adr_predict(text)
65
- return obj[0],obj[1],obj[2]
66
- # ,obj[3]
67
 
68
  title = "Welcome to **ADR Detector** 🪐"
69
  description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
@@ -83,21 +81,20 @@ with gr.Blocks(title=title) as demo:
83
 
84
  with gr.Column(visible=True) as output_col:
85
  med = gr.Label(label = "Contains Medication")
86
- # sym = gr.Label(label = "Contains Symptoms")
87
 
88
  submit_btn.click(
89
  main,
90
  [prob1],
91
  [label
92
  ,local_plot, med
93
- # , sym
94
  ], api_name="adr"
95
  )
96
 
97
  with gr.Row():
98
  gr.Markdown("### Click on any of the examples below to see how it works:")
99
- gr.Examples([["I had severe headache after taking Aspirin."],["I had minor stomachache after taking Acetaminophen."]], [prob1], [label,local_plot, med
100
- # , sym
101
  ], main, cache_examples=True)
102
 
103
  demo.launch()
 
36
  score_1 = x['score']
37
  return round(score_1,3)
38
 
39
+ def sym_score(x):
40
+ label2sym= x['label']
41
+ score_1sym = x['score']
42
+ return round(score_1sym,3)
43
 
44
  ##
45
 
 
55
  med = med_score(classifier(x+str(", There is a medication."))[0])
56
  # sym = sym_score(classifier(x+str(", There is a symptom."))[0])
57
 
58
+ return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
 
59
 
60
 
61
  def main(prob1):
62
  text = str(prob1).lower()
63
  obj = adr_predict(text)
64
+ return obj[0],obj[1],obj[2],obj[3]
 
65
 
66
  title = "Welcome to **ADR Detector** 🪐"
67
  description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
 
81
 
82
  with gr.Column(visible=True) as output_col:
83
  med = gr.Label(label = "Contains Medication")
84
+ sym = gr.Label(label = "Contains Symptoms")
85
 
86
  submit_btn.click(
87
  main,
88
  [prob1],
89
  [label
90
  ,local_plot, med
91
+ , sym
92
  ], api_name="adr"
93
  )
94
 
95
  with gr.Row():
96
  gr.Markdown("### Click on any of the examples below to see how it works:")
97
+ gr.Examples([["I had severe headache after taking Aspirin."],["I had minor stomachache after taking Acetaminophen."]], [prob1], [label,local_plot, med, sym
 
98
  ], main, cache_examples=True)
99
 
100
  demo.launch()