Help_chatbot / app.py
UKURIKIYEYEZU's picture
Update app.py
91f3525 verified
raw
history blame
23.9 kB
import os
import PyPDF2
from PyPDF2 import PdfReader
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
import pandas as pd
folder_path = "./"
context_data = []
# List all files in the folder
files = os.listdir(folder_path)
# Get list of CSV and Excel files
data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))]
# Process each file
for f, file in enumerate(data_files, 1):
print(f"\nProcessing file {f}: {file}")
file_path = os.path.join(folder_path, file)
try:
# Read the file based on its extension
if file.endswith('.csv'):
df = pd.read_csv(file_path)
else:
df = pd.read_excel(file_path)
# Extract non-empty values from column 2 and append them
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
except Exception as e:
print(f"Error processing file {file}: {str(e)}")
# def extract_text_from_pdf(pdf_path):
# """Extracts text from a PDF file."""
# try:
# with open(pdf_path, "rb") as file:
# reader = PyPDF2.PdfReader(file)
# text = "".join(page.extract_text() or "" for page in reader.pages) # Handle None cases
# return text
# except Exception as e:
# print(f"Error extracting text from {pdf_path}: {e}")
# return ""
# folder_path = "./"
# # Initialize the list to hold the extracted text chunks
# text_chunks = []
# # Get all PDF filenames in the folder
# filenames = [f for f in os.listdir(folder_path) if f.lower().endswith(".pdf")]
# # Process each PDF file
# for index, file in enumerate(filenames, 1):
# print(f"\nProcessing file {index}: {file}")
# pdf_path = os.path.join(folder_path, file)
# try:
# # Extract text from the PDF
# extracted_text = extract_text_from_pdf(pdf_path)
# if extracted_text.strip(): # Ensure extracted text is not just whitespace
# # Split extracted text into chunks of 1000 characters
# chunks = [extracted_text[i:i+2000] for i in range(0, len(extracted_text), 2000)]
# # Append extracted chunks to the list
# text_chunks.extend(chunks)
# else:
# print(f"No text found in the PDF: {file}")
# except Exception as e:
# print(f"Error reading the PDF {file}: {e}")
from urllib.parse import urljoin, urlparse
import requests
from io import BytesIO
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
def scrape_websites(base_urls):
try:
visited_links = set() # To avoid revisiting the same link
content_by_url = {} # Store content from each URL
for base_url in base_urls:
if not base_url.strip():
continue # Skip empty or invalid URLs
print(f"Scraping base URL: {base_url}")
html_content = fetch_page_content(base_url)
if html_content:
cleaned_content = clean_body_content(html_content)
content_by_url[base_url] = cleaned_content
visited_links.add(base_url)
# Extract and process all internal links
soup = BeautifulSoup(html_content, "html.parser")
links = extract_internal_links(base_url, soup)
for link in links:
if link not in visited_links:
print(f"Scraping link: {link}")
page_content = fetch_page_content(link)
if page_content:
cleaned_content = clean_body_content(page_content)
content_by_url[link] = cleaned_content
visited_links.add(link)
# If the link is a PDF file, extract its content
if link.lower().endswith('.pdf'):
print(f"Extracting PDF content from: {link}")
pdf_content = extract_pdf_text(link)
if pdf_content:
content_by_url[link] = pdf_content
return content_by_url
except Exception as e:
print(f"Error during scraping: {e}")
return {}
def fetch_page_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching {url}: {e}")
return None
def extract_internal_links(base_url, soup):
links = set()
for anchor in soup.find_all("a", href=True):
href = anchor["href"]
full_url = urljoin(base_url, href)
if is_internal_link(base_url, full_url):
links.add(full_url)
return links
def is_internal_link(base_url, link_url):
base_netloc = urlparse(base_url).netloc
link_netloc = urlparse(link_url).netloc
return base_netloc == link_netloc
def extract_pdf_text(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
# Open the PDF from the response content
with BytesIO(response.content) as file:
reader = PdfReader(file)
pdf_text = ""
for page in reader.pages:
pdf_text += page.extract_text()
return pdf_text if pdf_text else None
except requests.exceptions.RequestException as e:
print(f"Error fetching PDF {pdf_url}: {e}")
return None
except Exception as e:
print(f"Error reading PDF {pdf_url}: {e}")
return None
def clean_body_content(html_content):
soup = BeautifulSoup(html_content, "html.parser")
# Remove scripts and styles
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
# Get text and clean up
cleaned_content = soup.get_text(separator="\n")
cleaned_content = "\n".join(
line.strip() for line in cleaned_content.splitlines() if line.strip()
)
return cleaned_content
# if __name__ == "__main__":
# website = [
# #"https://www.rib.gov.rw/index.php?id=371",
# "https://haguruka.org.rw/our-work/"
# ]
# all_content = scrape_websites(website)
# # Temporary list to store (url, content) tuples
# temp_list = []
# # Process and store each URL with its content
# for url, content in all_content.items():
# temp_list.append((url, content))
# processed_texts = []
# # Process each element in the temporary list
# for element in temp_list:
# if isinstance(element, tuple):
# url, content = element # Unpack the tuple
# processed_texts.append(f"url: {url}, content: {content}")
# elif isinstance(element, str):
# processed_texts.append(element)
# else:
# processed_texts.append(str(element))
# def chunk_string(s, chunk_size=2000):
# return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
# # List to store the chunks
# chunked_texts = []
# for text in processed_texts:
# chunked_texts.extend(chunk_string(text))
data = []
data.extend(context_data)
# data.extend([item for item in text_chunks if item not in data])
# data.extend([item for item in chunked_texts if item not in data])
#from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="GBV_set",
embedding_function=embed_model,
)
vectorstore.get().keys()
# add data to vector nstore
vectorstore.add_texts(data)
api= os.environ.get('V1')
from openai import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import gradio as gr
from typing import Iterator
import time
#template for GBV support chatbot
template = ("""
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
When responding to {first_name}, follow these guidelines:
1. **Emotional Intelligence**
- Validate feelings without judgment (e.g., "It is completely understandable to feel this way")
- Offer reassurance when appropriate, always centered on empowerment
- Adjust your tone based on the emotional state conveyed
2. **Personalized Communication**
- Avoid contractions (e.g., use I am instead of I'm)
- Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
- Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions
- Balance warmth with professionalism
3. **Conversation Management**
- Refer to {conversation_history} to maintain continuity and avoid repetition
- Keep responses concise unless greater detail is explicitly requested
- Use clear paragraph breaks for readability
- Prioritize immediate concerns before addressing secondary issues
4. **Information Delivery**
- Extract only relevant information from {context} that directly addresses the question
- Present information in accessible, non-technical language
- Organize resource recommendations in order of relevance and accessibility
- Provide links [URL] only when specifically requested, prefaced with clear descriptions
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
5. **Safety and Ethics**
- Prioritize user safety in all responses
- Never generate speculative content about their specific situation
- Avoid phrases that could minimize experiences or create pressure
- Include gentle reminders about professional help when discussing serious issues
Your response should balance emotional support with practical guidance, always centered on {first_name}'s expressed needs and current emotional state.
**Context:** {context}
**User's Question:** {question}
**Your Response:**
""")
rag_prompt = PromptTemplate.from_template(template)
retriever = vectorstore.as_retriever()
import requests
API_TOKEN = os.environ.get('TOKEN')
model_name = "facebook/nllb-200-distilled-600M"
url = f"https://api-inference.huggingface.co/models/{model_name}"
headers = {
"Authorization": f"Bearer {API_TOKEN}"
}
def translate_text(text, src_lang, tgt_lang):
"""Translate text using Hugging Face API"""
response = requests.post(
url,
headers=headers,
json={
"inputs": text,
"parameters": {
"src_lang": src_lang,
"tgt_lang": tgt_lang
}
}
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
return result[0]['translation_text']
return result['translation_text']
else:
print(f"Translation error: {response.status_code}, {response.text}")
return text # Return original text if translation fails
class OpenRouterLLM:
def __init__(self, key: str):
try:
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=key
)
self.headers = {
"HTTP-Referer": "http://localhost:3000",
"X-Title": "Local Development"
}
except Exception as e:
print(f"Initialization error: {e}")
raise
def stream(self, prompt: str) -> Iterator[str]:
try:
completion = self.client.chat.completions.create(
#model="deepseek/deepseek-r1-distill-llama-70b:free",
model="meta-llama/llama-3.3-70b-instruct:free",
messages=[{"role": "user", "content": prompt}],
stream=True
)
for chunk in completion:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
yield delta.content
except Exception as e:
yield f"Streaming error: {str(e)}"
class UserSession:
def __init__(self, llm: OpenRouterLLM): # Accept an instance of OpenRouterLLM
self.current_user = None
self.welcome_message = None
self.conversation_history = [] # Add conversation history storage
self.llm = llm # Store the LLM instance
def set_user(self, user_info):
self.current_user = user_info
self.set_welcome_message(user_info.get("Nickname", "Guest"))
# Initialize conversation history with welcome message
welcome = self.get_welcome_message()
self.conversation_history = [
{"role": "assistant", "content": welcome},
]
def get_user(self):
return self.current_user
def set_welcome_message(self, Nickname, src_lang="eng_Latn", tgt_lang="kin_Latn"):
"""Set a dynamic welcome message using the OpenRouterLLM."""
prompt = (
f"Create a very brief welcome message for {Nickname} that fits in 3 lines. "
f"The message should: "
f"1. Welcome {Nickname} warmly and professionally. "
f"2. Emphasize that this is a safe and trusted space. "
f"3. Highlight specialized support for gender-based violence (GBV) and legal assistance. "
f"4. Use a tone that is warm, reassuring, and professional. "
f"5. Keep the message concise and impactful, ensuring it fits within the character limit."
)
# Use the OpenRouterLLM to generate the message
welcome = "".join(self.llm.stream(prompt)) # Stream and concatenate the response
welcome_text=translate_text(welcome, src_lang, tgt_lang)
# Format the message with HTML styling
self.welcome_message = (
f"<div style='font-size: 24px; font-weight: bold; color: #2E86C1;'>"
f"Welcome {Nickname}! 👋</div>"
f"<div style='font-size: 20px;'>"
f"{welcome_text}"
f"</div>"
)
def get_welcome_message(self):
return self.welcome_message
def add_to_history(self, role, message):
"""Add a message to the conversation history"""
self.conversation_history.append({"role": role, "content": message})
def get_conversation_history(self):
"""Get the full conversation history"""
return self.conversation_history
def get_formatted_history(self):
"""Get conversation history formatted as a string for the LLM"""
formatted_history = ""
for entry in self.conversation_history:
role = "User" if entry["role"] == "user" else "Assistant"
formatted_history += f"{role}: {entry['content']}\n\n"
return formatted_history
api_key =api
llm_instance = OpenRouterLLM(key=api_key)
#llm_instance = model
user_session = UserSession(llm_instance)
def collect_user_info(Nickname):
if not Nickname:
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
# Store user info for chat session
user_info = {
"Nickname": Nickname,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
# Set user in session
user_session.set_user(user_info)
# Generate welcome message
welcome_message = user_session.get_welcome_message()
# Add initial message to start the conversation
chat_history = add_initial_message([(None, welcome_message)])
# Return welcome message and update UI
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
# Add initial message to start the conversation
def add_initial_message(chatbot):
#initial_message = (" "
# )
return chatbot #+ [(None, initial_message)]
# Create RAG chain with user context and conversation history
def create_rag_chain(retriever, template, api_key):
llm = OpenRouterLLM(api_key)
rag_prompt = PromptTemplate.from_template(template)
def stream_func(input_dict):
# Get context using the retriever's invoke method
context = retriever.invoke(input_dict["question"])
context_str = "\n".join([doc.page_content for doc in context])
# Get user info from the session
user_info = user_session.get_user() or {}
first_name = user_info.get("Nickname", "User")
# Get conversation history
conversation_history = user_session.get_formatted_history()
# Format prompt with user context and conversation history
prompt = rag_prompt.format(
context=context_str,
question=input_dict["question"],
first_name=first_name,
conversation_history=conversation_history
)
# Stream response
return llm.stream(prompt)
return stream_func
# def rag_memory_stream(message, history):
# # Add user message to history
# user_session.add_to_history("user", message)
# # Initialize with empty response
# partial_text = ""
# full_response = ""
# # Use the rag_chain with the question
# for new_text in rag_chain({"question": message}):
# partial_text += new_text
# full_response = partial_text
# yield partial_text
# # After generating the complete response, add it to history
# user_session.add_to_history("assistant", full_response)
def rag_memory_stream(message, history, user_lang="kin_Latn", system_lang="eng_Latn"):
english_message = translate_text(message, user_lang, system_lang)
user_session.add_to_history("user", english_message)
full_response = ""
for new_text in rag_chain({"question": english_message}):
full_response += new_text
translated_response = translate_text(full_response, system_lang, user_lang)
user_session.add_to_history("assistant", full_response)
yield translated_response
import gradio as gr
api_key = api
def chatbot_interface():
api_key = api
global template
template = """
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
**Previous conversation:**
{conversation_history}
**Context information:**
{context}
**User's Question:** {question}
When responding to {first_name}, follow these guidelines:
1. **Emotional Intelligence**
- Validate feelings without judgment (e.g., "It is completely understandable to feel this way")
- Offer reassurance when appropriate, always centered on empowerment
- Adjust your tone based on the emotional state conveyed
2. **Personalized Communication**
- Avoid contractions (e.g., use I am instead of I'm)
- Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
- Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions
- Balance warmth with professionalism
3. **Conversation Management**
- Refer to {conversation_history} to maintain continuity and avoid repetition
- Keep responses concise unless greater detail is explicitly requested
- Use clear paragraph breaks for readability
- Prioritize immediate concerns before addressing secondary issues
4. **Information Delivery**
- Extract only relevant information from {context} that directly addresses the question
- Present information in accessible, non-technical language
- Organize resource recommendations in order of relevance and accessibility
- Provide links only when specifically requested, prefaced with clear descriptions
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
5. **Safety and Ethics**
- Prioritize user safety in all responses
- Never generate speculative content about their specific situation
- Avoid phrases that could minimize experiences or create pressure
- Include gentle reminders about professional help when discussing serious issues
Your response should balance emotional support with practical guidance, always centered on {first_name}'s expressed needs and current emotional state.
"""
global rag_chain
rag_chain = create_rag_chain(retriever, template, api_key)
with gr.Blocks() as demo:
# User registration section
with gr.Column(visible=True, elem_id="registration_container") as registration_container:
gr.Markdown("### Your privacy matters to us! Just share a nickname you feel comfy with to start chatting..")
with gr.Row():
first_name = gr.Textbox(
label="Nickname",
placeholder="Enter your Nickname You feel comfy",
scale=1,
elem_id="input_nickname"
)
with gr.Row():
submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
response_message = gr.Markdown()
# Chatbot section (initially hidden)
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
chat_interface = gr.ChatInterface(
fn=rag_memory_stream,
title="Chat with GBVR",
fill_height=True
)
# Footer with version info
gr.Markdown("Ijwi ry'Ubufasha Chatbot v1.0.0 © 2025")
# Handle user registration
submit_btn.click(
collect_user_info,
inputs=[first_name],
outputs=[response_message, chatbot_container, registration_container, chat_interface.chatbot]
)
demo.css = """
:root {
--background: #f0f0f0;
--text: #000000;
}
body, .gradio-container {
margin: 0;
padding: 0;
width: 100vw;
height: 100vh;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
background: var(--background);
color: var(--text);
}
.gradio-container {
max-width: 100%;
max-height: 100%;
}
.gr-box {
background: var(--background);
color: var(--text);
border-radius: 12px;
padding: 2rem;
border: 1px solid rgba(0, 0, 0, 0.1);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.gr-button-primary {
background: var(--background);
color: var(--text);
padding: 12px 24px;
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 0, 0, 0.1);
}
.gr-button-primary:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
}
footer {
text-align: center;
color: var(--text);
opacity: 0.7;
padding: 1rem;
font-size: 0.9em;
}
.gr-markdown h3 {
color: var(--text);
margin-bottom: 1rem;
}
.registration-markdown, .chat-title h1 {
color: var(--text);
}
"""
return demo
# Launch the interface
if __name__ == "__main__":
chatbot_interface().launch(share=True)