Spaces:
Running
Running
File size: 23,873 Bytes
5e4a27f 05b59ed 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f fdcab3d 5e4a27f fdcab3d b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f b24f7f9 5e4a27f 6e17553 5e4a27f 6e17553 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 4880aa4 5e4a27f 2558dea da6e416 2558dea da6e416 2558dea 397e757 2558dea 4880aa4 5e4a27f 4880aa4 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 8462695 91f3525 8462695 5e4a27f 05b59ed 2558dea 05b59ed 5e4a27f 6223ca8 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 12337a2 5e4a27f 71ea214 5e4a27f 05b59ed baf31a6 71ea214 8462695 5e4a27f baf31a6 8462695 5e4a27f 8462695 71ea214 8462695 71ea214 8462695 71ea214 05b59ed 8462695 71ea214 05b59ed 8462695 05b59ed 8462695 baf31a6 12337a2 baf31a6 8462695 baf31a6 12337a2 baf31a6 8462695 baf31a6 12337a2 baf31a6 5e4a27f 8462695 71ea214 5e4a27f 8462695 baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed a78fdc5 05b59ed baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed baf31a6 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 8462695 baf31a6 8462695 baf31a6 8462695 05b59ed 9ab35ad 8462695 acf09e2 8462695 acf09e2 8462695 acf09e2 8462695 acf09e2 8462695 baf31a6 acf09e2 8462695 4880aa4 8462695 4880aa4 2558dea da6e416 2558dea da6e416 2558dea 397e757 2558dea 53abcb8 acf09e2 8462695 2558dea 53abcb8 05b59ed 53abcb8 71ea214 baf31a6 acf09e2 05b59ed baf31a6 faf6c7b 53abcb8 05b59ed acf09e2 53abcb8 acf09e2 05b59ed 53abcb8 05b59ed 4880aa4 d26ee43 05b59ed acf09e2 05b59ed faf6c7b acf09e2 05b59ed baf31a6 05b59ed c3a5fcb 53abcb8 0c7d227 05b59ed 5e4a27f baf31a6 05b59ed 4880aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
import os
import PyPDF2
from PyPDF2 import PdfReader
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
import pandas as pd
folder_path = "./"
context_data = []
# List all files in the folder
files = os.listdir(folder_path)
# Get list of CSV and Excel files
data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))]
# Process each file
for f, file in enumerate(data_files, 1):
print(f"\nProcessing file {f}: {file}")
file_path = os.path.join(folder_path, file)
try:
# Read the file based on its extension
if file.endswith('.csv'):
df = pd.read_csv(file_path)
else:
df = pd.read_excel(file_path)
# Extract non-empty values from column 2 and append them
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
except Exception as e:
print(f"Error processing file {file}: {str(e)}")
# def extract_text_from_pdf(pdf_path):
# """Extracts text from a PDF file."""
# try:
# with open(pdf_path, "rb") as file:
# reader = PyPDF2.PdfReader(file)
# text = "".join(page.extract_text() or "" for page in reader.pages) # Handle None cases
# return text
# except Exception as e:
# print(f"Error extracting text from {pdf_path}: {e}")
# return ""
# folder_path = "./"
# # Initialize the list to hold the extracted text chunks
# text_chunks = []
# # Get all PDF filenames in the folder
# filenames = [f for f in os.listdir(folder_path) if f.lower().endswith(".pdf")]
# # Process each PDF file
# for index, file in enumerate(filenames, 1):
# print(f"\nProcessing file {index}: {file}")
# pdf_path = os.path.join(folder_path, file)
# try:
# # Extract text from the PDF
# extracted_text = extract_text_from_pdf(pdf_path)
# if extracted_text.strip(): # Ensure extracted text is not just whitespace
# # Split extracted text into chunks of 1000 characters
# chunks = [extracted_text[i:i+2000] for i in range(0, len(extracted_text), 2000)]
# # Append extracted chunks to the list
# text_chunks.extend(chunks)
# else:
# print(f"No text found in the PDF: {file}")
# except Exception as e:
# print(f"Error reading the PDF {file}: {e}")
from urllib.parse import urljoin, urlparse
import requests
from io import BytesIO
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
def scrape_websites(base_urls):
try:
visited_links = set() # To avoid revisiting the same link
content_by_url = {} # Store content from each URL
for base_url in base_urls:
if not base_url.strip():
continue # Skip empty or invalid URLs
print(f"Scraping base URL: {base_url}")
html_content = fetch_page_content(base_url)
if html_content:
cleaned_content = clean_body_content(html_content)
content_by_url[base_url] = cleaned_content
visited_links.add(base_url)
# Extract and process all internal links
soup = BeautifulSoup(html_content, "html.parser")
links = extract_internal_links(base_url, soup)
for link in links:
if link not in visited_links:
print(f"Scraping link: {link}")
page_content = fetch_page_content(link)
if page_content:
cleaned_content = clean_body_content(page_content)
content_by_url[link] = cleaned_content
visited_links.add(link)
# If the link is a PDF file, extract its content
if link.lower().endswith('.pdf'):
print(f"Extracting PDF content from: {link}")
pdf_content = extract_pdf_text(link)
if pdf_content:
content_by_url[link] = pdf_content
return content_by_url
except Exception as e:
print(f"Error during scraping: {e}")
return {}
def fetch_page_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching {url}: {e}")
return None
def extract_internal_links(base_url, soup):
links = set()
for anchor in soup.find_all("a", href=True):
href = anchor["href"]
full_url = urljoin(base_url, href)
if is_internal_link(base_url, full_url):
links.add(full_url)
return links
def is_internal_link(base_url, link_url):
base_netloc = urlparse(base_url).netloc
link_netloc = urlparse(link_url).netloc
return base_netloc == link_netloc
def extract_pdf_text(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
# Open the PDF from the response content
with BytesIO(response.content) as file:
reader = PdfReader(file)
pdf_text = ""
for page in reader.pages:
pdf_text += page.extract_text()
return pdf_text if pdf_text else None
except requests.exceptions.RequestException as e:
print(f"Error fetching PDF {pdf_url}: {e}")
return None
except Exception as e:
print(f"Error reading PDF {pdf_url}: {e}")
return None
def clean_body_content(html_content):
soup = BeautifulSoup(html_content, "html.parser")
# Remove scripts and styles
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
# Get text and clean up
cleaned_content = soup.get_text(separator="\n")
cleaned_content = "\n".join(
line.strip() for line in cleaned_content.splitlines() if line.strip()
)
return cleaned_content
# if __name__ == "__main__":
# website = [
# #"https://www.rib.gov.rw/index.php?id=371",
# "https://haguruka.org.rw/our-work/"
# ]
# all_content = scrape_websites(website)
# # Temporary list to store (url, content) tuples
# temp_list = []
# # Process and store each URL with its content
# for url, content in all_content.items():
# temp_list.append((url, content))
# processed_texts = []
# # Process each element in the temporary list
# for element in temp_list:
# if isinstance(element, tuple):
# url, content = element # Unpack the tuple
# processed_texts.append(f"url: {url}, content: {content}")
# elif isinstance(element, str):
# processed_texts.append(element)
# else:
# processed_texts.append(str(element))
# def chunk_string(s, chunk_size=2000):
# return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
# # List to store the chunks
# chunked_texts = []
# for text in processed_texts:
# chunked_texts.extend(chunk_string(text))
data = []
data.extend(context_data)
# data.extend([item for item in text_chunks if item not in data])
# data.extend([item for item in chunked_texts if item not in data])
#from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="GBV_set",
embedding_function=embed_model,
)
vectorstore.get().keys()
# add data to vector nstore
vectorstore.add_texts(data)
api= os.environ.get('V1')
from openai import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import gradio as gr
from typing import Iterator
import time
#template for GBV support chatbot
template = ("""
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
When responding to {first_name}, follow these guidelines:
1. **Emotional Intelligence**
- Validate feelings without judgment (e.g., "It is completely understandable to feel this way")
- Offer reassurance when appropriate, always centered on empowerment
- Adjust your tone based on the emotional state conveyed
2. **Personalized Communication**
- Avoid contractions (e.g., use I am instead of I'm)
- Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
- Use selective emojis (π, π€, β€οΈ) only when tone-appropriate and not during crisis discussions
- Balance warmth with professionalism
3. **Conversation Management**
- Refer to {conversation_history} to maintain continuity and avoid repetition
- Keep responses concise unless greater detail is explicitly requested
- Use clear paragraph breaks for readability
- Prioritize immediate concerns before addressing secondary issues
4. **Information Delivery**
- Extract only relevant information from {context} that directly addresses the question
- Present information in accessible, non-technical language
- Organize resource recommendations in order of relevance and accessibility
- Provide links [URL] only when specifically requested, prefaced with clear descriptions
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
5. **Safety and Ethics**
- Prioritize user safety in all responses
- Never generate speculative content about their specific situation
- Avoid phrases that could minimize experiences or create pressure
- Include gentle reminders about professional help when discussing serious issues
Your response should balance emotional support with practical guidance, always centered on {first_name}'s expressed needs and current emotional state.
**Context:** {context}
**User's Question:** {question}
**Your Response:**
""")
rag_prompt = PromptTemplate.from_template(template)
retriever = vectorstore.as_retriever()
import requests
API_TOKEN = os.environ.get('TOKEN')
model_name = "facebook/nllb-200-distilled-600M"
url = f"https://api-inference.huggingface.co/models/{model_name}"
headers = {
"Authorization": f"Bearer {API_TOKEN}"
}
def translate_text(text, src_lang, tgt_lang):
"""Translate text using Hugging Face API"""
response = requests.post(
url,
headers=headers,
json={
"inputs": text,
"parameters": {
"src_lang": src_lang,
"tgt_lang": tgt_lang
}
}
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
return result[0]['translation_text']
return result['translation_text']
else:
print(f"Translation error: {response.status_code}, {response.text}")
return text # Return original text if translation fails
class OpenRouterLLM:
def __init__(self, key: str):
try:
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=key
)
self.headers = {
"HTTP-Referer": "http://localhost:3000",
"X-Title": "Local Development"
}
except Exception as e:
print(f"Initialization error: {e}")
raise
def stream(self, prompt: str) -> Iterator[str]:
try:
completion = self.client.chat.completions.create(
#model="deepseek/deepseek-r1-distill-llama-70b:free",
model="meta-llama/llama-3.3-70b-instruct:free",
messages=[{"role": "user", "content": prompt}],
stream=True
)
for chunk in completion:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
yield delta.content
except Exception as e:
yield f"Streaming error: {str(e)}"
class UserSession:
def __init__(self, llm: OpenRouterLLM): # Accept an instance of OpenRouterLLM
self.current_user = None
self.welcome_message = None
self.conversation_history = [] # Add conversation history storage
self.llm = llm # Store the LLM instance
def set_user(self, user_info):
self.current_user = user_info
self.set_welcome_message(user_info.get("Nickname", "Guest"))
# Initialize conversation history with welcome message
welcome = self.get_welcome_message()
self.conversation_history = [
{"role": "assistant", "content": welcome},
]
def get_user(self):
return self.current_user
def set_welcome_message(self, Nickname, src_lang="eng_Latn", tgt_lang="kin_Latn"):
"""Set a dynamic welcome message using the OpenRouterLLM."""
prompt = (
f"Create a very brief welcome message for {Nickname} that fits in 3 lines. "
f"The message should: "
f"1. Welcome {Nickname} warmly and professionally. "
f"2. Emphasize that this is a safe and trusted space. "
f"3. Highlight specialized support for gender-based violence (GBV) and legal assistance. "
f"4. Use a tone that is warm, reassuring, and professional. "
f"5. Keep the message concise and impactful, ensuring it fits within the character limit."
)
# Use the OpenRouterLLM to generate the message
welcome = "".join(self.llm.stream(prompt)) # Stream and concatenate the response
welcome_text=translate_text(welcome, src_lang, tgt_lang)
# Format the message with HTML styling
self.welcome_message = (
f"<div style='font-size: 24px; font-weight: bold; color: #2E86C1;'>"
f"Welcome {Nickname}! π</div>"
f"<div style='font-size: 20px;'>"
f"{welcome_text}"
f"</div>"
)
def get_welcome_message(self):
return self.welcome_message
def add_to_history(self, role, message):
"""Add a message to the conversation history"""
self.conversation_history.append({"role": role, "content": message})
def get_conversation_history(self):
"""Get the full conversation history"""
return self.conversation_history
def get_formatted_history(self):
"""Get conversation history formatted as a string for the LLM"""
formatted_history = ""
for entry in self.conversation_history:
role = "User" if entry["role"] == "user" else "Assistant"
formatted_history += f"{role}: {entry['content']}\n\n"
return formatted_history
api_key =api
llm_instance = OpenRouterLLM(key=api_key)
#llm_instance = model
user_session = UserSession(llm_instance)
def collect_user_info(Nickname):
if not Nickname:
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
# Store user info for chat session
user_info = {
"Nickname": Nickname,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
# Set user in session
user_session.set_user(user_info)
# Generate welcome message
welcome_message = user_session.get_welcome_message()
# Add initial message to start the conversation
chat_history = add_initial_message([(None, welcome_message)])
# Return welcome message and update UI
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
# Add initial message to start the conversation
def add_initial_message(chatbot):
#initial_message = (" "
# )
return chatbot #+ [(None, initial_message)]
# Create RAG chain with user context and conversation history
def create_rag_chain(retriever, template, api_key):
llm = OpenRouterLLM(api_key)
rag_prompt = PromptTemplate.from_template(template)
def stream_func(input_dict):
# Get context using the retriever's invoke method
context = retriever.invoke(input_dict["question"])
context_str = "\n".join([doc.page_content for doc in context])
# Get user info from the session
user_info = user_session.get_user() or {}
first_name = user_info.get("Nickname", "User")
# Get conversation history
conversation_history = user_session.get_formatted_history()
# Format prompt with user context and conversation history
prompt = rag_prompt.format(
context=context_str,
question=input_dict["question"],
first_name=first_name,
conversation_history=conversation_history
)
# Stream response
return llm.stream(prompt)
return stream_func
# def rag_memory_stream(message, history):
# # Add user message to history
# user_session.add_to_history("user", message)
# # Initialize with empty response
# partial_text = ""
# full_response = ""
# # Use the rag_chain with the question
# for new_text in rag_chain({"question": message}):
# partial_text += new_text
# full_response = partial_text
# yield partial_text
# # After generating the complete response, add it to history
# user_session.add_to_history("assistant", full_response)
def rag_memory_stream(message, history, user_lang="kin_Latn", system_lang="eng_Latn"):
english_message = translate_text(message, user_lang, system_lang)
user_session.add_to_history("user", english_message)
full_response = ""
for new_text in rag_chain({"question": english_message}):
full_response += new_text
translated_response = translate_text(full_response, system_lang, user_lang)
user_session.add_to_history("assistant", full_response)
yield translated_response
import gradio as gr
api_key = api
def chatbot_interface():
api_key = api
global template
template = """
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
**Previous conversation:**
{conversation_history}
**Context information:**
{context}
**User's Question:** {question}
When responding to {first_name}, follow these guidelines:
1. **Emotional Intelligence**
- Validate feelings without judgment (e.g., "It is completely understandable to feel this way")
- Offer reassurance when appropriate, always centered on empowerment
- Adjust your tone based on the emotional state conveyed
2. **Personalized Communication**
- Avoid contractions (e.g., use I am instead of I'm)
- Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
- Use selective emojis (π, π€, β€οΈ) only when tone-appropriate and not during crisis discussions
- Balance warmth with professionalism
3. **Conversation Management**
- Refer to {conversation_history} to maintain continuity and avoid repetition
- Keep responses concise unless greater detail is explicitly requested
- Use clear paragraph breaks for readability
- Prioritize immediate concerns before addressing secondary issues
4. **Information Delivery**
- Extract only relevant information from {context} that directly addresses the question
- Present information in accessible, non-technical language
- Organize resource recommendations in order of relevance and accessibility
- Provide links only when specifically requested, prefaced with clear descriptions
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
5. **Safety and Ethics**
- Prioritize user safety in all responses
- Never generate speculative content about their specific situation
- Avoid phrases that could minimize experiences or create pressure
- Include gentle reminders about professional help when discussing serious issues
Your response should balance emotional support with practical guidance, always centered on {first_name}'s expressed needs and current emotional state.
"""
global rag_chain
rag_chain = create_rag_chain(retriever, template, api_key)
with gr.Blocks() as demo:
# User registration section
with gr.Column(visible=True, elem_id="registration_container") as registration_container:
gr.Markdown("### Your privacy matters to us! Just share a nickname you feel comfy with to start chatting..")
with gr.Row():
first_name = gr.Textbox(
label="Nickname",
placeholder="Enter your Nickname You feel comfy",
scale=1,
elem_id="input_nickname"
)
with gr.Row():
submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
response_message = gr.Markdown()
# Chatbot section (initially hidden)
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
chat_interface = gr.ChatInterface(
fn=rag_memory_stream,
title="Chat with GBVR",
fill_height=True
)
# Footer with version info
gr.Markdown("Ijwi ry'Ubufasha Chatbot v1.0.0 Β© 2025")
# Handle user registration
submit_btn.click(
collect_user_info,
inputs=[first_name],
outputs=[response_message, chatbot_container, registration_container, chat_interface.chatbot]
)
demo.css = """
:root {
--background: #f0f0f0;
--text: #000000;
}
body, .gradio-container {
margin: 0;
padding: 0;
width: 100vw;
height: 100vh;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
background: var(--background);
color: var(--text);
}
.gradio-container {
max-width: 100%;
max-height: 100%;
}
.gr-box {
background: var(--background);
color: var(--text);
border-radius: 12px;
padding: 2rem;
border: 1px solid rgba(0, 0, 0, 0.1);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.gr-button-primary {
background: var(--background);
color: var(--text);
padding: 12px 24px;
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 0, 0, 0.1);
}
.gr-button-primary:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
}
footer {
text-align: center;
color: var(--text);
opacity: 0.7;
padding: 1rem;
font-size: 0.9em;
}
.gr-markdown h3 {
color: var(--text);
margin-bottom: 1rem;
}
.registration-markdown, .chat-title h1 {
color: var(--text);
}
"""
return demo
# Launch the interface
if __name__ == "__main__":
chatbot_interface().launch(share=True) |