Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
""
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import PyPDF2
|
| 3 |
+
from google.colab import userdata
|
| 4 |
+
from PyPDF2 import PdfReader
|
| 5 |
+
|
| 6 |
+
## Embedding model!
|
| 7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 8 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
|
| 12 |
+
# Set folder path
|
| 13 |
+
folder_path = "/content/drive/MyDrive/Ijwi_folder"
|
| 14 |
+
context_data = []
|
| 15 |
+
|
| 16 |
+
# List all files in the folder
|
| 17 |
+
files = os.listdir(folder_path)
|
| 18 |
+
|
| 19 |
+
# Get list of CSV and Excel files
|
| 20 |
+
data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))]
|
| 21 |
+
|
| 22 |
+
# Process each file
|
| 23 |
+
for f, file in enumerate(data_files, 1):
|
| 24 |
+
print(f"\nProcessing file {f}: {file}")
|
| 25 |
+
file_path = os.path.join(folder_path, file)
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
# Read the file based on its extension
|
| 29 |
+
if file.endswith('.csv'):
|
| 30 |
+
df = pd.read_csv(file_path)
|
| 31 |
+
else:
|
| 32 |
+
df = pd.read_excel(file_path)
|
| 33 |
+
|
| 34 |
+
# Extract non-empty values from column 2 and append them
|
| 35 |
+
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error processing file {file}: {str(e)}")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def extract_text_from_pdf(pdf_path):
|
| 45 |
+
"""Extracts text from a PDF file."""
|
| 46 |
+
try:
|
| 47 |
+
with open(pdf_path, "rb") as file:
|
| 48 |
+
reader = PyPDF2.PdfReader(file)
|
| 49 |
+
text = "".join(page.extract_text() or "" for page in reader.pages) # Handle None cases
|
| 50 |
+
return text
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"Error extracting text from {pdf_path}: {e}")
|
| 53 |
+
return ""
|
| 54 |
+
|
| 55 |
+
# Folder containing the PDFs
|
| 56 |
+
folder_path ="/content/drive/MyDrive/Ijwi_folder" # Update with your actual folder path
|
| 57 |
+
|
| 58 |
+
# Initialize the list to hold the extracted text chunks
|
| 59 |
+
text_chunks = []
|
| 60 |
+
|
| 61 |
+
# Get all PDF filenames in the folder
|
| 62 |
+
filenames = [f for f in os.listdir(folder_path) if f.lower().endswith(".pdf")]
|
| 63 |
+
|
| 64 |
+
# Process each PDF file
|
| 65 |
+
for index, file in enumerate(filenames, 1):
|
| 66 |
+
print(f"\nProcessing file {index}: {file}")
|
| 67 |
+
pdf_path = os.path.join(folder_path, file)
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
# Extract text from the PDF
|
| 71 |
+
extracted_text = extract_text_from_pdf(pdf_path)
|
| 72 |
+
|
| 73 |
+
if extracted_text.strip(): # Ensure extracted text is not just whitespace
|
| 74 |
+
# Split extracted text into chunks of 1000 characters
|
| 75 |
+
chunks = [extracted_text[i:i+2000] for i in range(0, len(extracted_text), 2000)]
|
| 76 |
+
|
| 77 |
+
# Append extracted chunks to the list
|
| 78 |
+
text_chunks.extend(chunks)
|
| 79 |
+
else:
|
| 80 |
+
print(f"No text found in the PDF: {file}")
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Error reading the PDF {file}: {e}")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
from urllib.parse import urljoin, urlparse
|
| 88 |
+
import requests
|
| 89 |
+
from io import BytesIO
|
| 90 |
+
|
| 91 |
+
from bs4 import BeautifulSoup
|
| 92 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 93 |
import gradio as gr
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def scrape_websites(base_urls):
|
| 97 |
+
try:
|
| 98 |
+
visited_links = set() # To avoid revisiting the same link
|
| 99 |
+
content_by_url = {} # Store content from each URL
|
| 100 |
+
|
| 101 |
+
for base_url in base_urls:
|
| 102 |
+
if not base_url.strip():
|
| 103 |
+
continue # Skip empty or invalid URLs
|
| 104 |
+
|
| 105 |
+
print(f"Scraping base URL: {base_url}")
|
| 106 |
+
html_content = fetch_page_content(base_url)
|
| 107 |
+
if html_content:
|
| 108 |
+
cleaned_content = clean_body_content(html_content)
|
| 109 |
+
content_by_url[base_url] = cleaned_content
|
| 110 |
+
visited_links.add(base_url)
|
| 111 |
+
|
| 112 |
+
# Extract and process all internal links
|
| 113 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
| 114 |
+
links = extract_internal_links(base_url, soup)
|
| 115 |
+
|
| 116 |
+
for link in links:
|
| 117 |
+
if link not in visited_links:
|
| 118 |
+
print(f"Scraping link: {link}")
|
| 119 |
+
page_content = fetch_page_content(link)
|
| 120 |
+
if page_content:
|
| 121 |
+
cleaned_content = clean_body_content(page_content)
|
| 122 |
+
content_by_url[link] = cleaned_content
|
| 123 |
+
visited_links.add(link)
|
| 124 |
+
|
| 125 |
+
# If the link is a PDF file, extract its content
|
| 126 |
+
if link.lower().endswith('.pdf'):
|
| 127 |
+
print(f"Extracting PDF content from: {link}")
|
| 128 |
+
pdf_content = extract_pdf_text(link)
|
| 129 |
+
if pdf_content:
|
| 130 |
+
content_by_url[link] = pdf_content
|
| 131 |
+
|
| 132 |
+
return content_by_url
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error during scraping: {e}")
|
| 136 |
+
return {}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def fetch_page_content(url):
|
| 140 |
+
try:
|
| 141 |
+
response = requests.get(url, timeout=10)
|
| 142 |
+
response.raise_for_status()
|
| 143 |
+
return response.text
|
| 144 |
+
except requests.exceptions.RequestException as e:
|
| 145 |
+
print(f"Error fetching {url}: {e}")
|
| 146 |
+
return None
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def extract_internal_links(base_url, soup):
|
| 150 |
+
links = set()
|
| 151 |
+
for anchor in soup.find_all("a", href=True):
|
| 152 |
+
href = anchor["href"]
|
| 153 |
+
full_url = urljoin(base_url, href)
|
| 154 |
+
if is_internal_link(base_url, full_url):
|
| 155 |
+
links.add(full_url)
|
| 156 |
+
return links
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def is_internal_link(base_url, link_url):
|
| 160 |
+
base_netloc = urlparse(base_url).netloc
|
| 161 |
+
link_netloc = urlparse(link_url).netloc
|
| 162 |
+
return base_netloc == link_netloc
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def extract_pdf_text(pdf_url):
|
| 166 |
+
try:
|
| 167 |
+
response = requests.get(pdf_url)
|
| 168 |
+
response.raise_for_status()
|
| 169 |
+
|
| 170 |
+
# Open the PDF from the response content
|
| 171 |
+
with BytesIO(response.content) as file:
|
| 172 |
+
reader = PdfReader(file)
|
| 173 |
+
pdf_text = ""
|
| 174 |
+
for page in reader.pages:
|
| 175 |
+
pdf_text += page.extract_text()
|
| 176 |
+
|
| 177 |
+
return pdf_text if pdf_text else None
|
| 178 |
+
except requests.exceptions.RequestException as e:
|
| 179 |
+
print(f"Error fetching PDF {pdf_url}: {e}")
|
| 180 |
+
return None
|
| 181 |
+
except Exception as e:
|
| 182 |
+
print(f"Error reading PDF {pdf_url}: {e}")
|
| 183 |
+
return None
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def clean_body_content(html_content):
|
| 187 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
| 188 |
+
|
| 189 |
+
# Remove scripts and styles
|
| 190 |
+
for script_or_style in soup(["script", "style"]):
|
| 191 |
+
script_or_style.extract()
|
| 192 |
+
|
| 193 |
+
# Get text and clean up
|
| 194 |
+
cleaned_content = soup.get_text(separator="\n")
|
| 195 |
+
cleaned_content = "\n".join(
|
| 196 |
+
line.strip() for line in cleaned_content.splitlines() if line.strip()
|
| 197 |
+
)
|
| 198 |
+
return cleaned_content
|
| 199 |
+
|
| 200 |
|
| 201 |
|
| 202 |
if __name__ == "__main__":
|
| 203 |
+
website = [
|
| 204 |
+
"https://www.rib.gov.rw/index.php?id=371",
|
| 205 |
+
"https://haguruka.org.rw/our-work/"
|
| 206 |
+
]
|
| 207 |
+
all_content = scrape_websites(website)
|
| 208 |
+
|
| 209 |
+
# Temporary list to store (url, content) tuples
|
| 210 |
+
temp_list = []
|
| 211 |
+
|
| 212 |
+
# Process and store each URL with its content
|
| 213 |
+
for url, content in all_content.items():
|
| 214 |
+
temp_list.append((url, content))
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
processed_texts = []
|
| 219 |
+
|
| 220 |
+
# Process each element in the temporary list
|
| 221 |
+
for element in temp_list:
|
| 222 |
+
if isinstance(element, tuple):
|
| 223 |
+
url, content = element # Unpack the tuple
|
| 224 |
+
processed_texts.append(f"url: {url}, content: {content}")
|
| 225 |
+
elif isinstance(element, str):
|
| 226 |
+
processed_texts.append(element)
|
| 227 |
+
else:
|
| 228 |
+
processed_texts.append(str(element))
|
| 229 |
+
|
| 230 |
+
def chunk_string(s, chunk_size=2000):
|
| 231 |
+
return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
|
| 232 |
+
|
| 233 |
+
# List to store the chunks
|
| 234 |
+
chunked_texts = []
|
| 235 |
+
|
| 236 |
+
for text in processed_texts:
|
| 237 |
+
chunked_texts.extend(chunk_string(text))
|
| 238 |
+
|
| 239 |
+
data = []
|
| 240 |
+
data.extend(context_data)
|
| 241 |
+
data.extend([item for item in text_chunks if item not in data])
|
| 242 |
+
data.extend([item for item in chunked_texts if item not in data])
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
from langchain_community.vectorstores import Chroma
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
vectorstore = Chroma(
|
| 250 |
+
collection_name="GBV_dataset",
|
| 251 |
+
embedding_function=embed_model,
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
vectorstore.get().keys()
|
| 255 |
+
|
| 256 |
+
# add data to vector nstore
|
| 257 |
+
vectorstore.add_texts(data)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
from openai import OpenAI
|
| 265 |
+
from langchain_core.prompts import PromptTemplate
|
| 266 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 267 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 268 |
+
import gradio as gr
|
| 269 |
+
from typing import Iterator
|
| 270 |
+
import time
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# Template with user personalization and improved welcome message
|
| 274 |
+
template = ("""
|
| 275 |
+
You are a friendly and intelligent chatbot designed to assist users in a conversational and human-like manner. Your goal is to provide accurate, helpful, and engaging responses based on the provided context: {context}. Follow these guidelines:
|
| 276 |
+
|
| 277 |
+
1. **Contextual Interaction**
|
| 278 |
+
- Begin with a warm and empathetic welcome message
|
| 279 |
+
- Extract precise details from provided context: {context}
|
| 280 |
+
- Respond directly to user's question: {question}
|
| 281 |
+
- Remember the user's name is {first_name} and address them by name occasionally not always
|
| 282 |
+
|
| 283 |
+
2. **Communication Guidelines**
|
| 284 |
+
- Maintain warm, conversational tone
|
| 285 |
+
- Use occasional emojis for engagement
|
| 286 |
+
- Provide clear, concise information
|
| 287 |
+
|
| 288 |
+
3. **Response Strategies**
|
| 289 |
+
- Greet users naturally and ask about their wellbeing (e.g., "Hello {first_name}! π How are you feeling today?", "Welcome, {first_name}! π You're in a safe and caring space. What's on your mind today?")
|
| 290 |
+
- Always start with a check-in about the user's wellbeing or current situation
|
| 291 |
+
- Deliver only relevant information
|
| 292 |
+
- Avoid generating content beyond context
|
| 293 |
+
- Handle missing information transparently
|
| 294 |
+
|
| 295 |
+
4. **No Extra Content**
|
| 296 |
+
- If no information matches user's request:
|
| 297 |
+
* Respond politely: "I don't have that information at the moment, {first_name}. π"
|
| 298 |
+
* Offer alternative assistance options
|
| 299 |
+
- Strictly avoid generating unsupported content
|
| 300 |
+
- Prevent information padding or speculation
|
| 301 |
+
|
| 302 |
+
5. **Extracting Relevant Links**
|
| 303 |
+
- If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
|
| 304 |
+
- Example response:
|
| 305 |
+
- "Here is the link you requested, {first_name}: [URL]"
|
| 306 |
+
|
| 307 |
+
6. **Real-Time Awareness**
|
| 308 |
+
- Acknowledge current context when appropriate
|
| 309 |
+
- Stay focused on user's immediate needs
|
| 310 |
+
- If this is the first message, always ask how the user is feeling and what they would like help with today
|
| 311 |
+
|
| 312 |
+
**Context:** {context}
|
| 313 |
+
**User's Question:** {question}
|
| 314 |
+
**Welcome Message:** {welcome_message}
|
| 315 |
+
**Is First Message:** {is_first_message}
|
| 316 |
+
**Your Response:**
|
| 317 |
+
""")
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class OpenRouterLLM:
|
| 328 |
+
def __init__(self, api_key: str):
|
| 329 |
+
self.client = OpenAI(
|
| 330 |
+
base_url="https://openrouter.ai/api/v1",
|
| 331 |
+
api_key=api
|
| 332 |
+
)
|
| 333 |
+
self.headers = {
|
| 334 |
+
"HTTP-Referer": "http://localhost:3000",
|
| 335 |
+
"X-Title": "Local Development"
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def stream(self, prompt: str) -> Iterator[str]:
|
| 340 |
+
try:
|
| 341 |
+
completion = self.client.chat.completions.create(
|
| 342 |
+
extra_headers=self.headers,
|
| 343 |
+
model="deepseek/deepseek-r1-distill-llama-70b:free",
|
| 344 |
+
#model="google/gemini-2.0-flash-thinking-exp:free",
|
| 345 |
+
messages=[{"role": "user", "content": prompt}],
|
| 346 |
+
stream=True
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
for chunk in completion:
|
| 350 |
+
if chunk.choices[0].delta.content is not None:
|
| 351 |
+
yield chunk.choices[0].delta.content
|
| 352 |
+
except Exception as e:
|
| 353 |
+
yield f"Error: {str(e)}"
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class UserSession:
|
| 359 |
+
def __init__(self):
|
| 360 |
+
self.current_user = None
|
| 361 |
+
self.is_first_message = True
|
| 362 |
+
|
| 363 |
+
def set_user(self, user_info):
|
| 364 |
+
self.current_user = user_info
|
| 365 |
+
self.is_first_message = True
|
| 366 |
+
|
| 367 |
+
def get_user(self):
|
| 368 |
+
return self.current_user
|
| 369 |
+
|
| 370 |
+
def mark_message_sent(self):
|
| 371 |
+
self.is_first_message = False
|
| 372 |
+
|
| 373 |
+
def is_first(self):
|
| 374 |
+
return self.is_first_message
|
| 375 |
+
|
| 376 |
+
# Initialize session and LLM
|
| 377 |
+
user_session = UserSession()
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
|