Spaces:
Running
Running
File size: 19,215 Bytes
5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f fdcab3d 5e4a27f fdcab3d 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 816e7a3 05b59ed 816e7a3 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed 5e4a27f 05b59ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import os
import PyPDF2
from google.colab import userdata
from PyPDF2 import PdfReader
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
import pandas as pd
folder_path = "./"
context_data = []
# List all files in the folder
files = os.listdir(folder_path)
# Get list of CSV and Excel files
data_files = [f for f in files if f.endswith(('.csv', '.xlsx', '.xls'))]
# Process each file
for f, file in enumerate(data_files, 1):
print(f"\nProcessing file {f}: {file}")
file_path = os.path.join(folder_path, file)
try:
# Read the file based on its extension
if file.endswith('.csv'):
df = pd.read_csv(file_path)
else:
df = pd.read_excel(file_path)
# Extract non-empty values from column 2 and append them
context_data.extend(df.iloc[:, 2].dropna().astype(str).tolist())
except Exception as e:
print(f"Error processing file {file}: {str(e)}")
def extract_text_from_pdf(pdf_path):
"""Extracts text from a PDF file."""
try:
with open(pdf_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
text = "".join(page.extract_text() or "" for page in reader.pages) # Handle None cases
return text
except Exception as e:
print(f"Error extracting text from {pdf_path}: {e}")
return ""
folder_path = "./"
# Initialize the list to hold the extracted text chunks
text_chunks = []
# Get all PDF filenames in the folder
filenames = [f for f in os.listdir(folder_path) if f.lower().endswith(".pdf")]
# Process each PDF file
for index, file in enumerate(filenames, 1):
print(f"\nProcessing file {index}: {file}")
pdf_path = os.path.join(folder_path, file)
try:
# Extract text from the PDF
extracted_text = extract_text_from_pdf(pdf_path)
if extracted_text.strip(): # Ensure extracted text is not just whitespace
# Split extracted text into chunks of 1000 characters
chunks = [extracted_text[i:i+2000] for i in range(0, len(extracted_text), 2000)]
# Append extracted chunks to the list
text_chunks.extend(chunks)
else:
print(f"No text found in the PDF: {file}")
except Exception as e:
print(f"Error reading the PDF {file}: {e}")
from urllib.parse import urljoin, urlparse
import requests
from io import BytesIO
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
def scrape_websites(base_urls):
try:
visited_links = set() # To avoid revisiting the same link
content_by_url = {} # Store content from each URL
for base_url in base_urls:
if not base_url.strip():
continue # Skip empty or invalid URLs
print(f"Scraping base URL: {base_url}")
html_content = fetch_page_content(base_url)
if html_content:
cleaned_content = clean_body_content(html_content)
content_by_url[base_url] = cleaned_content
visited_links.add(base_url)
# Extract and process all internal links
soup = BeautifulSoup(html_content, "html.parser")
links = extract_internal_links(base_url, soup)
for link in links:
if link not in visited_links:
print(f"Scraping link: {link}")
page_content = fetch_page_content(link)
if page_content:
cleaned_content = clean_body_content(page_content)
content_by_url[link] = cleaned_content
visited_links.add(link)
# If the link is a PDF file, extract its content
if link.lower().endswith('.pdf'):
print(f"Extracting PDF content from: {link}")
pdf_content = extract_pdf_text(link)
if pdf_content:
content_by_url[link] = pdf_content
return content_by_url
except Exception as e:
print(f"Error during scraping: {e}")
return {}
def fetch_page_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching {url}: {e}")
return None
def extract_internal_links(base_url, soup):
links = set()
for anchor in soup.find_all("a", href=True):
href = anchor["href"]
full_url = urljoin(base_url, href)
if is_internal_link(base_url, full_url):
links.add(full_url)
return links
def is_internal_link(base_url, link_url):
base_netloc = urlparse(base_url).netloc
link_netloc = urlparse(link_url).netloc
return base_netloc == link_netloc
def extract_pdf_text(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
# Open the PDF from the response content
with BytesIO(response.content) as file:
reader = PdfReader(file)
pdf_text = ""
for page in reader.pages:
pdf_text += page.extract_text()
return pdf_text if pdf_text else None
except requests.exceptions.RequestException as e:
print(f"Error fetching PDF {pdf_url}: {e}")
return None
except Exception as e:
print(f"Error reading PDF {pdf_url}: {e}")
return None
def clean_body_content(html_content):
soup = BeautifulSoup(html_content, "html.parser")
# Remove scripts and styles
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
# Get text and clean up
cleaned_content = soup.get_text(separator="\n")
cleaned_content = "\n".join(
line.strip() for line in cleaned_content.splitlines() if line.strip()
)
return cleaned_content
if __name__ == "__main__":
website = [
"https://www.rib.gov.rw/index.php?id=371",
"https://haguruka.org.rw/our-work/"
]
all_content = scrape_websites(website)
# Temporary list to store (url, content) tuples
temp_list = []
# Process and store each URL with its content
for url, content in all_content.items():
temp_list.append((url, content))
processed_texts = []
# Process each element in the temporary list
for element in temp_list:
if isinstance(element, tuple):
url, content = element # Unpack the tuple
processed_texts.append(f"url: {url}, content: {content}")
elif isinstance(element, str):
processed_texts.append(element)
else:
processed_texts.append(str(element))
def chunk_string(s, chunk_size=2000):
return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
# List to store the chunks
chunked_texts = []
for text in processed_texts:
chunked_texts.extend(chunk_string(text))
data = []
data.extend(context_data)
data.extend([item for item in text_chunks if item not in data])
data.extend([item for item in chunked_texts if item not in data])
from langchain_community.vectorstores import Chroma
vectorstore = Chroma(
collection_name="GBV_dataset",
embedding_function=embed_model,
)
vectorstore.get().keys()
# add data to vector nstore
vectorstore.add_texts(data)
api= os.environ.get('V1')
from openai import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import gradio as gr
from typing import Iterator
import time
# Refined Template with Emotional Awareness
template = ("""
You are a friendly and empathetic chatbot designed to assist users in a conversational and human-like manner. Your goal is to provide accurate, helpful, and emotionally supportive responses based on the provided context: {context}. Follow these guidelines:
1. **Emotional Awareness**
- Acknowledge the user's emotions and respond with empathy.
- Use phrases like "I understand how you feel," "That sounds challenging," or "I'm here to support you."
- If the user expresses negative emotions, offer comfort and reassurance.
2. **Contextual Interaction**
- Begin with a warm and empathetic welcome message.
- Extract precise details from the provided context: {context}.
- Respond directly to the user's question: {question}.
- Remember the user's name is {first_name}. some time you can address it occasionally
3. **Communication Guidelines**
- Maintain a warm, conversational tone.
- Use occasional emojis for engagement (e.g., π, π,π, β€οΈ).
- Provide clear, concise, and emotionally supportive information.
4. **Response Strategies**
- Greet users naturally and ask about their wellbeing (e.g., "Welcome, {first_name}! π How are you feeling today?", "Hello {first_name}! π€ What's on your mind?").
- Always start with a check-in about the user's wellbeing or current situation.
- Deliver only relevant information.
- Avoid generating content beyond the context.
- Handle missing information transparently.
5. **No Extra Content**
- If no information matches the user's request:
* Respond politely: "I don't have that information at the moment, {first_name}. π"
* Offer alternative assistance options.
- Strictly avoid generating unsupported content.
- Prevent information padding or speculation.
6. **Extracting Relevant Links**
- If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
- Example response:
- "Here is the link you requested, [URL]"
7. **Real-Time Awareness**
- Acknowledge the current context when appropriate.
- Stay focused on the user's immediate needs.
- If this is the first message, always ask how the user is feeling and what they would like help with today.
**Context:** {context}
**User's Question:** {question}
**Your Response:**
""")
rag_prompt = PromptTemplate.from_template(template)
retriever = vectorstore.as_retriever()
class OpenRouterLLM:
def __init__(self, key: str):
try:
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=key # Corrected from `key=getmod`
)
self.headers = {
"HTTP-Referer": "http://localhost:3000",
"X-Title": "Local Development"
}
except Exception as e:
print(f"Initialization error: {e}")
raise
def stream(self, prompt: str) -> Iterator[str]:
try:
completion = self.client.chat.completions.create(
model="deepseek/deepseek-r1-distill-llama-70b:free",
messages=[{"role": "user", "content": prompt}],
stream=True
)
for chunk in completion:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
yield delta.content
except Exception as e:
yield f"Streaming error: {str(e)}"
class UserSession:
def __init__(self):
self.current_user = None
self.welcome_message = None
def set_user(self, user_info):
self.current_user = user_info
self.set_welcome_message(user_info.get("first_name", "Guest"))
def get_user(self):
return self.current_user
def set_welcome_message(self, first_name):
self.welcome_message = (
f"<div style='font-size: 18px; font-weight: bold; color: #2E86C1;'>"
f"Welcome {first_name}! π</div>"
f"<div style='font-size: 14px; color: #34495E;'>"
f"We appreciate you reaching out to us. You are in a safe and trusted space designed to support you. "
f"Here, you can find guidance on gender-based violence (GBV) and legal assistance.<br><br>"
f"You donβt have to go through this aloneβwe are here to listen, support, and help you find the right solutions. "
f"You deserve to be heard and helped, and we are committed to standing by your side."
f"</div>"
)
def get_welcome_message(self):
return self.welcome_message
# Initialize session
user_session = UserSession()
# Store user details and handle session
def collect_user_info(first_name, last_name, phone):
if not first_name or not last_name or not phone:
return "All fields are required to proceed.", gr.update(visible=False), gr.update(visible=True), []
# Validate phone number (basic validation)
if not phone.replace("+", "").replace("-", "").replace(" ", "").isdigit():
return "Please enter a valid phone number.", gr.update(visible=False), gr.update(visible=True), []
# Store user info for chat session
user_info = {
"first_name": first_name,
"last_name": last_name,
"phone": phone,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
# Set user in session
user_session.set_user(user_info)
# Generate welcome message
welcome_message = user_session.get_welcome_message()
# Add initial message to start the conversation
chat_history = add_initial_message([(None, welcome_message)])
# Return welcome message and update UI
return welcome_message, gr.update(visible=True), gr.update(visible=False), chat_history
# Add initial message to start the conversation
def add_initial_message(chatbot):
initial_message = (
"<div style='font-size: 14px; font-weight: normal; color: #16A085;'>"
f"I just want to check in and see how you are doing."
f"If you are going through something, please know you are not alone, I am here for you, no matter what.π€"
"</div>"
)
return chatbot + [(None, initial_message)]
# Create RAG chain with user context
def create_rag_chain(retriever, template, api_key):
llm = OpenRouterLLM(api_key)
rag_prompt = PromptTemplate.from_template(template)
def stream_func(input_dict):
# Get context using the retriever's invoke method
context = retriever.invoke(input_dict["question"])
context_str = "\n".join([doc.page_content for doc in context])
# Get user info from the session
user_info = user_session.get_user() or {}
first_name = user_info.get("first_name", "User")
# Format prompt with user context
prompt = rag_prompt.format(
context=context_str,
question=input_dict["question"],
first_name=first_name
)
# Stream response
return llm.stream(prompt)
return stream_func
def rag_memory_stream(message, history):
# Initialize with empty response
partial_text = ""
# Get user context
user_info = user_session.get_user()
# Use the rag_chain with the question
for new_text in rag_chain({"question": message}):
partial_text += new_text
yield partial_text
# Gradio Interface Setup with improved UX
def chatbot_interface():
# Get API key (in a real application, handle this more securely)
api_key = api # This should be properly defined or imported elsewhere
# Create the RAG chain with user context
global rag_chain
rag_chain = create_rag_chain(retriever, template, api_key)
# Create theme
theme = gr.themes.Soft(
primary_hue="indigo",
secondary_hue="blue",
)
with gr.Blocks(theme=theme, css="""
.welcome-container {
text-align: center;
margin-bottom: 20px;
padding: 20px;
border-radius: 10px;
background-color: #f0f4ff;
}
.feedback-btn { margin-top: 10px; }
footer { margin-top: 30px; text-align: center; }
""") as demo:
# Welcome banner
gr.Markdown("# π€ Ijwi ry'Ubufasha - Your AI Assistant", elem_classes=["welcome-container"])
# User registration section
registration_container = gr.Column(visible=True)
with registration_container:
gr.Markdown("### Please provide your details to start chatting")
with gr.Row():
first_name = gr.Textbox(
label="First Name",
placeholder="Enter your first name",
scale=1
)
last_name = gr.Textbox(
label="Last Name",
placeholder="Enter your last name",
scale=1
)
phone = gr.Textbox(
label="Phone Number",
placeholder="Enter your phone number (e.g., +250...)",
)
with gr.Row():
submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
response_message = gr.Markdown(elem_id="welcome-message")
# Chatbot section (initially hidden)
chatbot_container = gr.Column(visible=False)
with chatbot_container:
chat_interface = gr.ChatInterface(
fn=rag_memory_stream,
title="π€ Help Chatbot",
fill_height=True,
theme=theme
)
# Feedback buttons
with gr.Row():
feedback_label = gr.Markdown("### Was this conversation helpful?")
with gr.Row():
thumbs_up = gr.Button("π Yes, it was helpful", elem_classes=["feedback-btn"])
thumbs_down = gr.Button("π No, it needs improvement", elem_classes=["feedback-btn"])
# Footer with version info
gr.Markdown("Ijwi ry'Ubufasha v1.0.0 Β© 2025", elem_id="footer")
# Handle user registration
submit_btn.click(
collect_user_info,
inputs=[first_name, last_name, phone],
outputs=[response_message, chatbot_container, registration_container, chat_interface.chatbot]
)
# Handle feedback (placeholder functionality)
def record_feedback(feedback_type):
# Here you could log feedback to a file or database
feedback_message = f"Thank you for your feedback! We'll use it to improve our service."
return feedback_message
thumbs_up.click(lambda: record_feedback("positive"), outputs=feedback_label)
thumbs_down.click(lambda: record_feedback("negative"), outputs=feedback_label)
return demo
if __name__ == "__main__":
chatbot_interface().launch(share=True, inbrowser=True) |