Tzktz's picture
Upload 7664 files
6fc683c verified
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
from collections import defaultdict
from torch._six import container_abcs
from copy import deepcopy
from itertools import chain
def warmup_cosine(x, warmup=0.002):
if x < warmup:
return x/warmup
return 0.5 * (1.0 + torch.cos(math.pi * x))
def warmup_constant(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return max((x-1.)/(warmup-1.), 0)
SCHEDULES = {
'warmup_cosine': warmup_cosine,
'warmup_constant': warmup_constant,
'warmup_linear': warmup_linear,
}
class BertAdam(Optimizer):
"""Implements BERT version of Adam algorithm with weight decay fix.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate. Default: -1
schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
if lr is not required and lr < 0.0:
raise ValueError(
"Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError(
"Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError(
"Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError(
"Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError(
"Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss
class BertAdamFineTune(BertAdam):
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
self.init_param_group = []
super(BertAdamFineTune, self).__init__(params, lr, warmup,
t_total, schedule, b1, b2, e, weight_decay, max_grad_norm)
def save_init_param_group(self, param_groups, name_groups, missing_keys):
self.init_param_group = []
for group, name in zip(param_groups, name_groups):
if group['weight_decay'] > 0.0:
init_p_list = []
for p, n in zip(group['params'], name):
init_p = p.data.clone().detach()
if any(mk in n for mk in missing_keys):
print("[no finetuning weight decay]", n)
# should use the original weight decay
init_p.zero_()
init_p_list.append(init_p)
self.init_param_group.append(init_p_list)
else:
# placeholder
self.init_param_group.append([])
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for i_group, group in enumerate(self.param_groups):
for i_p, p in enumerate(group['params']):
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
if self.init_param_group:
update += group['weight_decay'] * \
(2.0 * p.data -
self.init_param_group[i_group][i_p])
else:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(
state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss
def load_state_dict_subset_finetune(self, state_dict, num_load_group):
r"""Loads the optimizer state.
Arguments:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) < num_load_group or len(saved_groups) < num_load_group:
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups[:num_load_group])
saved_lens = (len(g['params']) for g in saved_groups[:num_load_group])
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain(*(g['params'] for g in saved_groups[:num_load_group])),
chain(*(g['params'] for g in groups[:num_load_group])))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
if param.is_floating_point():
value = value.to(param.dtype)
value = value.to(param.device)
return value
elif isinstance(value, dict):
return {k: cast(param, v) for k, v in value.items()}
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# handle additional params
for k, v in self.state:
if k not in state:
state[k] = v
# do not change groups: {'weight_decay': 0.01, 'lr': 9.995e-06, 'schedule': 'warmup_linear', 'warmup': 0.1, 't_total': 400000, 'b1': 0.9, 'b2': 0.999, 'e': 1e-06, 'max_grad_norm': 1.0, 'params': [...]}
# # Update parameter groups, setting their 'params' value
# def update_group(group, new_group):
# new_group['params'] = group['params']
# return new_group
# param_groups = [
# update_group(g, ng) for g, ng in zip(groups[:num_load_group], saved_groups[:num_load_group])]
# # handle additional params
# param_groups.extend(groups[num_load_group:])
self.__setstate__({'state': state, 'param_groups': groups})
def find_state_dict_subset_finetune(org_state_dict, org_name_list, no_decay, param_optimizer):
# only use the bert encoder and embeddings
want_name_set = set()
for n in org_name_list:
if ('bert.encoder' in n) or ('bert.embeddings' in n):
want_name_set.add(n)
# original: name to pid, pid to name
org_grouped_names = [[n for n in org_name_list if not any(nd in n for nd in no_decay)],
[n for n in org_name_list if any(nd in n for nd in no_decay)]]
org_n2id, org_id2n = {}, {}
for ng, pg in zip(org_grouped_names, org_state_dict['param_groups']):
for n, pid in zip(ng, pg['params']):
org_n2id[n] = pid
org_id2n[pid] = n
# group by: whether pretrained; whether weight decay
g_np_list = [
[(n, p) for n, p in param_optimizer if n in want_name_set and not any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n in want_name_set and any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n not in want_name_set and not any(
nd in n for nd in no_decay)],
[(n, p) for n, p in param_optimizer if n not in want_name_set and any(
nd in n for nd in no_decay)],
]
optimizer_grouped_parameters = [
{'params': [p for n, p in g_np_list[0]], 'weight_decay': 0.01},
{'params': [p for n, p in g_np_list[1]], 'weight_decay': 0.0},
{'params': [p for n, p in g_np_list[2]], 'weight_decay': 0.01},
{'params': [p for n, p in g_np_list[3]], 'weight_decay': 0.0}
]
new_state_dict = {}
# regroup the original state_dict
new_state_dict['state'] = {pid: v for pid, v in org_state_dict['state'].items(
) if pid not in org_id2n or org_id2n[pid] in want_name_set}
# reset step count to 0
for pid, st in new_state_dict['state'].items():
st['step'] = 0
def _filter_group(group, g_np_list, i, org_n2id):
packed = {k: v for k, v in group.items() if k != 'params'}
packed['params'] = [pid for pid in group['params']
if pid in org_id2n and org_id2n[pid] in want_name_set]
assert len(g_np_list[i]) == len(packed['params'])
# keep them the same order
packed['params'] = [org_n2id[n] for n, p in g_np_list[i]]
return packed
new_state_dict['param_groups'] = [_filter_group(
g, g_np_list, i, org_n2id) for i, g in enumerate(org_state_dict['param_groups'])]
return new_state_dict, optimizer_grouped_parameters