# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch optimization for BERT model.""" import math import torch from torch.optim import Optimizer from torch.optim.optimizer import required from torch.nn.utils import clip_grad_norm_ from collections import defaultdict from torch._six import container_abcs from copy import deepcopy from itertools import chain def warmup_cosine(x, warmup=0.002): if x < warmup: return x/warmup return 0.5 * (1.0 + torch.cos(math.pi * x)) def warmup_constant(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return max((x-1.)/(warmup-1.), 0) SCHEDULES = { 'warmup_cosine': warmup_cosine, 'warmup_constant': warmup_constant, 'warmup_linear': warmup_linear, } class BertAdam(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError( "Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError( "Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError( "Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError( "Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError( "Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct( state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct( state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 # No bias correction # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] return loss class BertAdamFineTune(BertAdam): def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): self.init_param_group = [] super(BertAdamFineTune, self).__init__(params, lr, warmup, t_total, schedule, b1, b2, e, weight_decay, max_grad_norm) def save_init_param_group(self, param_groups, name_groups, missing_keys): self.init_param_group = [] for group, name in zip(param_groups, name_groups): if group['weight_decay'] > 0.0: init_p_list = [] for p, n in zip(group['params'], name): init_p = p.data.clone().detach() if any(mk in n for mk in missing_keys): print("[no finetuning weight decay]", n) # should use the original weight decay init_p.zero_() init_p_list.append(init_p) self.init_param_group.append(init_p_list) else: # placeholder self.init_param_group.append([]) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for i_group, group in enumerate(self.param_groups): for i_p, p in enumerate(group['params']): if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: if self.init_param_group: update += group['weight_decay'] * \ (2.0 * p.data - self.init_param_group[i_group][i_p]) else: update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct( state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 # No bias correction # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] return loss def load_state_dict_subset_finetune(self, state_dict, num_load_group): r"""Loads the optimizer state. Arguments: state_dict (dict): optimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict['param_groups'] if len(groups) < num_load_group or len(saved_groups) < num_load_group: raise ValueError("loaded state dict has a different number of " "parameter groups") param_lens = (len(g['params']) for g in groups[:num_load_group]) saved_lens = (len(g['params']) for g in saved_groups[:num_load_group]) if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError("loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group") # Update the state id_map = {old_id: p for old_id, p in zip(chain(*(g['params'] for g in saved_groups[:num_load_group])), chain(*(g['params'] for g in groups[:num_load_group])))} def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # Floating-point types are a bit special here. They are the only ones # that are assumed to always match the type of params. if param.is_floating_point(): value = value.to(param.dtype) value = value.to(param.device) return value elif isinstance(value, dict): return {k: cast(param, v) for k, v in value.items()} elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict['state'].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # handle additional params for k, v in self.state: if k not in state: state[k] = v # do not change groups: {'weight_decay': 0.01, 'lr': 9.995e-06, 'schedule': 'warmup_linear', 'warmup': 0.1, 't_total': 400000, 'b1': 0.9, 'b2': 0.999, 'e': 1e-06, 'max_grad_norm': 1.0, 'params': [...]} # # Update parameter groups, setting their 'params' value # def update_group(group, new_group): # new_group['params'] = group['params'] # return new_group # param_groups = [ # update_group(g, ng) for g, ng in zip(groups[:num_load_group], saved_groups[:num_load_group])] # # handle additional params # param_groups.extend(groups[num_load_group:]) self.__setstate__({'state': state, 'param_groups': groups}) def find_state_dict_subset_finetune(org_state_dict, org_name_list, no_decay, param_optimizer): # only use the bert encoder and embeddings want_name_set = set() for n in org_name_list: if ('bert.encoder' in n) or ('bert.embeddings' in n): want_name_set.add(n) # original: name to pid, pid to name org_grouped_names = [[n for n in org_name_list if not any(nd in n for nd in no_decay)], [n for n in org_name_list if any(nd in n for nd in no_decay)]] org_n2id, org_id2n = {}, {} for ng, pg in zip(org_grouped_names, org_state_dict['param_groups']): for n, pid in zip(ng, pg['params']): org_n2id[n] = pid org_id2n[pid] = n # group by: whether pretrained; whether weight decay g_np_list = [ [(n, p) for n, p in param_optimizer if n in want_name_set and not any( nd in n for nd in no_decay)], [(n, p) for n, p in param_optimizer if n in want_name_set and any( nd in n for nd in no_decay)], [(n, p) for n, p in param_optimizer if n not in want_name_set and not any( nd in n for nd in no_decay)], [(n, p) for n, p in param_optimizer if n not in want_name_set and any( nd in n for nd in no_decay)], ] optimizer_grouped_parameters = [ {'params': [p for n, p in g_np_list[0]], 'weight_decay': 0.01}, {'params': [p for n, p in g_np_list[1]], 'weight_decay': 0.0}, {'params': [p for n, p in g_np_list[2]], 'weight_decay': 0.01}, {'params': [p for n, p in g_np_list[3]], 'weight_decay': 0.0} ] new_state_dict = {} # regroup the original state_dict new_state_dict['state'] = {pid: v for pid, v in org_state_dict['state'].items( ) if pid not in org_id2n or org_id2n[pid] in want_name_set} # reset step count to 0 for pid, st in new_state_dict['state'].items(): st['step'] = 0 def _filter_group(group, g_np_list, i, org_n2id): packed = {k: v for k, v in group.items() if k != 'params'} packed['params'] = [pid for pid in group['params'] if pid in org_id2n and org_id2n[pid] in want_name_set] assert len(g_np_list[i]) == len(packed['params']) # keep them the same order packed['params'] = [org_n2id[n] for n, p in g_np_list[i]] return packed new_state_dict['param_groups'] = [_filter_group( g, g_np_list, i, org_n2id) for i, g in enumerate(org_state_dict['param_groups'])] return new_state_dict, optimizer_grouped_parameters