|
|
|
|
|
|
|
import logging |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from apex.normalization import FusedLayerNorm as LayerNorm |
|
from fairseq import utils |
|
from fairseq.dataclass import ChoiceEnum, FairseqDataclass |
|
from fairseq.models import BaseFairseqModel, register_model, register_model_architecture |
|
from fairseq.models.squad import SQuADHead |
|
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding |
|
from fairseq.modules import PositionalEmbedding |
|
from omegaconf import II |
|
|
|
from torchscale.architecture.config import EncoderConfig |
|
|
|
from .machine_translation import MTEncoder as Encoder |
|
|
|
DEFAULT_MAX_SOURCE_POSITIONS = 1024 |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class BertConfig(FairseqDataclass): |
|
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( |
|
default="relu", metadata={"help": "activation function to use"} |
|
) |
|
dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) |
|
attention_dropout: float = field( |
|
default=0.0, metadata={"help": "dropout probability for attention weights"} |
|
) |
|
activation_dropout: float = field( |
|
default=0.0, metadata={"help": "dropout probability after activation in FFN."} |
|
) |
|
encoder_embed_dim: int = field( |
|
default=512, metadata={"help": "encoder embedding dimension"} |
|
) |
|
encoder_output_dim: int = field( |
|
default=512, metadata={"help": "encoder output dimension"} |
|
) |
|
encoder_input_dim: int = field( |
|
default=512, metadata={"help": "encoder input dimension"} |
|
) |
|
encoder_ffn_embed_dim: int = field( |
|
default=2048, metadata={"help": "encoder embedding dimension for FFN"} |
|
) |
|
encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"}) |
|
encoder_attention_heads: int = field( |
|
default=8, metadata={"help": "num encoder attention heads"} |
|
) |
|
encoder_normalize_before: bool = field( |
|
default=False, metadata={"help": "apply layernorm before each encoder block"} |
|
) |
|
no_encoder_final_norm: bool = field( |
|
default=False, |
|
metadata={"help": "don't add an extra layernorm after the last encoder block"}, |
|
) |
|
no_token_positional_embeddings: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "if set, disables positional embeddings (outside self attention)" |
|
}, |
|
) |
|
share_encoder_input_output_embed: bool = field( |
|
default=False, metadata={"help": "share encoder input and output embeddings"} |
|
) |
|
encoder_learned_pos: bool = field( |
|
default=False, |
|
metadata={"help": "use learned positional embeddings in the encoder"}, |
|
) |
|
layernorm_embedding: bool = field( |
|
default=False, metadata={"help": "add layernorm to embedding"} |
|
) |
|
no_scale_embedding: bool = field( |
|
default=False, metadata={"help": "if True, dont scale embeddings"} |
|
) |
|
checkpoint_activations: bool = field( |
|
default=False, metadata={"help": "checkpoint activations at each layer"} |
|
) |
|
offload_activations: bool = field( |
|
default=False, |
|
metadata={"help": "move checkpointed activations to CPU after they are used."}, |
|
) |
|
|
|
encoder_layerdrop: float = field( |
|
default=0.0, metadata={"help": "LayerDrop probability for encoder"} |
|
) |
|
encoder_layers_to_keep: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "which layers to *keep* when pruning as a comma-separated list" |
|
}, |
|
) |
|
|
|
min_params_to_wrap: int = field( |
|
default=DEFAULT_MIN_PARAMS_TO_WRAP, |
|
metadata={ |
|
"help": ( |
|
"minimum number of params for a layer to be wrapped with FSDP() when " |
|
"training with --ddp-backend=fully_sharded. Smaller values will " |
|
"improve memory efficiency, but may make torch.distributed " |
|
"communication less efficient due to smaller input sizes. This option " |
|
"is set to 0 (i.e., always wrap) when --checkpoint-activations or " |
|
"--offload-activations are passed." |
|
) |
|
}, |
|
) |
|
max_source_positions: int = field( |
|
default=1024, metadata={"help": "max source positions"} |
|
) |
|
pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( |
|
default="relu", metadata={"help": "activation function to use for pooler layer"} |
|
) |
|
pooler_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "dropout probability in the masked_lm pooler layers"}, |
|
) |
|
|
|
|
|
|
|
tpu: bool = II("common.tpu") |
|
rel_pos_buckets: int = field(default=0, metadata={"help": ""}) |
|
max_rel_pos: int = field(default=0, metadata={"help": ""}) |
|
moe_freq: int = field( |
|
default=0, |
|
metadata={"help": "Frequency at which we insert MoE Transformer layers"}, |
|
) |
|
moe_expert_count: int = field( |
|
default=0, metadata={"help": "Number of experts in each MoE Layer"} |
|
) |
|
moe_gating_use_fp32: bool = field( |
|
default=False, |
|
metadata={"help": "Use FP32 computations in MoE top2 gating function"}, |
|
) |
|
moe_second_expert_policy: str = field( |
|
default="sampling", |
|
metadata={"help": "policy for second expert, options: all/sampling/random"}, |
|
) |
|
moe_normalize_gate_prob_before_dropping: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" |
|
}, |
|
) |
|
moe_expert_ffn_dim: Optional[int] = field( |
|
default=None, metadata={"help": "MoE expert FFN dimension"} |
|
) |
|
moe_top1_expert: Optional[bool] = field( |
|
default=False, metadata={"help": "Use top1 gate instead of top2"} |
|
) |
|
moe_eval_capacity_token_fraction: Optional[float] = field( |
|
default=0.25, |
|
metadata={ |
|
"help": ( |
|
"Default: 0.25, Fraction of tokens as capacity during validation, " |
|
"if set to negative, use same as training. range: (0.0, 1.0]." |
|
) |
|
}, |
|
) |
|
moe_normalize_expert_grad: Optional[str] = field( |
|
default="world_size", |
|
metadata={ |
|
"help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" |
|
}, |
|
) |
|
record_a2a_perf_stats: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "records all to all perf stats during distributed training"}, |
|
) |
|
dummy_a2a: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "By passes all to all during distributed training by returning the input buffer as output" |
|
}, |
|
) |
|
moe_batch_prioritized_routing: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "if true orders token by the gate prob before capacity dropping." |
|
}, |
|
) |
|
ddp_rank: int = II("distributed_training.distributed_rank") |
|
deepnorm: Optional[bool] = field( |
|
default=False, |
|
) |
|
subln: Optional[bool] = field( |
|
default=False, |
|
) |
|
|
|
|
|
@register_model("mlm", dataclass=BertConfig) |
|
class BertModel(BaseFairseqModel): |
|
def __init__(self, args, encoder): |
|
super().__init__() |
|
self.args = args |
|
self.encoder = encoder |
|
self.padding_idx = self.encoder.embed_tokens.padding_idx |
|
self.classification_heads = nn.ModuleDict() |
|
|
|
@classmethod |
|
def build_model(cls, args, task): |
|
"""Build a new model instance.""" |
|
|
|
args.max_source_positions = getattr( |
|
args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS |
|
) |
|
|
|
embed_tokens = cls.build_embedding( |
|
args, task.dictionary, args.encoder_embed_dim |
|
) |
|
|
|
embed_positions = ( |
|
PositionalEmbedding( |
|
args.max_source_positions, |
|
args.encoder_embed_dim, |
|
task.dictionary.pad(), |
|
learned=args.encoder_learned_pos, |
|
) |
|
if not args.no_token_positional_embeddings |
|
else None |
|
) |
|
|
|
lm_head = cls.build_lm_head( |
|
args, |
|
args.encoder_embed_dim, |
|
len(task.dictionary), |
|
args.activation_fn, |
|
weight=embed_tokens.weight, |
|
) |
|
|
|
config = EncoderConfig() |
|
config.override(args) |
|
|
|
encoder = Encoder( |
|
config, |
|
embed_tokens=embed_tokens, |
|
embed_positions=embed_positions, |
|
output_projection=lm_head, |
|
is_encoder_decoder=False, |
|
dictionary=task.dictionary, |
|
) |
|
|
|
return cls(args, encoder) |
|
|
|
@classmethod |
|
def build_embedding(cls, args, dictionary, embed_dim, path=None): |
|
embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) |
|
return embed_tokens |
|
|
|
@classmethod |
|
def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight): |
|
return LMHead(embed_dim, output_dim, activation_fn, weight) |
|
|
|
def output_layer(self, features, masked_tokens=None): |
|
return self.encoder.output_projection(features, masked_tokens=masked_tokens) |
|
|
|
def register_classification_head( |
|
self, name, num_classes=None, inner_dim=None, **kwargs |
|
): |
|
"""Register a classification head.""" |
|
if name in self.classification_heads: |
|
prev_num_classes = self.classification_heads[name].out_proj.out_features |
|
prev_inner_dim = self.classification_heads[name].dense.out_features |
|
if num_classes != prev_num_classes or inner_dim != prev_inner_dim: |
|
logger.warning( |
|
're-registering head "{}" with num_classes {} (prev: {}) ' |
|
"and inner_dim {} (prev: {})".format( |
|
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim |
|
) |
|
) |
|
self.classification_heads[name] = ClassificationHead( |
|
self.args.encoder_embed_dim, |
|
inner_dim or self.args.encoder_embed_dim, |
|
num_classes, |
|
self.args.pooler_activation_fn, |
|
self.args.pooler_dropout, |
|
) |
|
|
|
def register_question_answering_head(self, name, num_classes=None): |
|
self.classification_heads[name] = SQuADHead( |
|
self.args.encoder_embed_dim, |
|
) |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
prefix = name + "." if name != "" else "" |
|
|
|
|
|
super().upgrade_state_dict_named(state_dict, name) |
|
|
|
|
|
current_head_names = ( |
|
[] |
|
if not hasattr(self, "classification_heads") |
|
else self.classification_heads.keys() |
|
) |
|
keys_to_delete = [] |
|
for k in state_dict.keys(): |
|
if not k.startswith(prefix + "classification_heads."): |
|
continue |
|
|
|
head_name = k[len(prefix + "classification_heads.") :].split(".")[0] |
|
num_classes = state_dict[ |
|
prefix + "classification_heads." + head_name + ".out_proj.weight" |
|
].size(0) |
|
inner_dim = state_dict[ |
|
prefix + "classification_heads." + head_name + ".dense.weight" |
|
].size(0) |
|
|
|
if getattr(self.args, "load_checkpoint_heads", False): |
|
if head_name not in current_head_names: |
|
self.register_classification_head(head_name, num_classes, inner_dim) |
|
else: |
|
if head_name not in current_head_names: |
|
logger.warning( |
|
"deleting classification head ({}) from checkpoint " |
|
"not present in current model: {}".format(head_name, k) |
|
) |
|
keys_to_delete.append(k) |
|
elif ( |
|
num_classes |
|
!= self.classification_heads[head_name].out_proj.out_features |
|
or inner_dim |
|
!= self.classification_heads[head_name].dense.out_features |
|
): |
|
logger.warning( |
|
"deleting classification head ({}) from checkpoint " |
|
"with different dimensions than current model: {}".format( |
|
head_name, k |
|
) |
|
) |
|
keys_to_delete.append(k) |
|
for k in keys_to_delete: |
|
del state_dict[k] |
|
|
|
|
|
|
|
if hasattr(self, "classification_heads"): |
|
cur_state = self.classification_heads.state_dict() |
|
for k, v in cur_state.items(): |
|
if prefix + "classification_heads." + k not in state_dict: |
|
logger.info("Overwriting " + prefix + "classification_heads." + k) |
|
state_dict[prefix + "classification_heads." + k] = v |
|
|
|
def forward( |
|
self, |
|
src_tokens=None, |
|
features_only=False, |
|
return_all_hiddens=False, |
|
classification_head_name=None, |
|
masked_tokens=None, |
|
**kwargs |
|
): |
|
encoder_out = self.encoder( |
|
src_tokens, features_only=True, return_all_hiddens=return_all_hiddens |
|
) |
|
x, extra = encoder_out["encoder_out"], encoder_out |
|
x = x.transpose(0, 1) |
|
|
|
if classification_head_name is not None: |
|
x = self.classification_heads[classification_head_name](x) |
|
elif not features_only: |
|
x = self.output_layer(x, masked_tokens=masked_tokens) |
|
|
|
return x, extra |
|
|
|
|
|
class ClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__( |
|
self, |
|
input_dim, |
|
inner_dim, |
|
num_classes, |
|
activation_fn, |
|
pooler_dropout, |
|
): |
|
super().__init__() |
|
self.dense = nn.Linear(input_dim, inner_dim) |
|
self.activation_fn = utils.get_activation_fn(activation_fn) |
|
self.dropout = nn.Dropout(p=pooler_dropout) |
|
self.out_proj = nn.Linear(inner_dim, num_classes) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = self.activation_fn(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class LMHead(nn.Module): |
|
"""Head for masked language modeling.""" |
|
|
|
def __init__(self, embed_dim, output_dim, activation_fn, weight=None): |
|
super().__init__() |
|
self.dense = nn.Linear(embed_dim, embed_dim) |
|
self.activation_fn = utils.get_activation_fn(activation_fn) |
|
self.layer_norm = LayerNorm(embed_dim) |
|
|
|
if weight is None: |
|
weight = nn.Linear(embed_dim, output_dim, bias=False).weight |
|
self.weight = weight |
|
self.bias = nn.Parameter(torch.zeros(output_dim)) |
|
|
|
def forward(self, features, masked_tokens=None, **kwargs): |
|
|
|
|
|
if masked_tokens is not None: |
|
features = features[masked_tokens, :] |
|
|
|
x = self.dense(features) |
|
x = self.activation_fn(x) |
|
x = self.layer_norm(x) |
|
|
|
x = F.linear(x, self.weight) + self.bias |
|
return x |
|
|
|
|
|
@register_model_architecture("mlm", "mlm_base") |
|
def base_unilm_architecture(args): |
|
if hasattr(args, "encoder_final_norm"): |
|
args.no_encoder_final_norm = not args.encoder_final_norm |
|
|
|
args.dropout = getattr(args, "dropout", 0.1) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.0) |
|
args.activation_dropout = getattr(args, "activation_dropout", 0.0) |
|
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) |
|
|
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) |
|
args.encoder_layers = getattr(args, "encoder_layers", 12) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) |
|
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) |
|
args.activation_fn = getattr(args, "activation_fn", "gelu") |
|
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") |
|
|
|
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) |
|
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) |
|
|
|
|
|
args.no_token_positional_embeddings = getattr( |
|
args, "no_token_positional_embeddings", False |
|
) |
|
args.share_encoder_input_output_embed = getattr( |
|
args, "share_encoder_input_output_embed", True |
|
) |
|
args.encoder_output_dim = getattr( |
|
args, "encoder_output_dim", args.encoder_embed_dim |
|
) |
|
args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim) |
|
|
|
|
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False) |
|
|
|
args.no_scale_embedding = getattr(args, "no_scale_embedding", True) |
|
args.layernorm_embedding = getattr(args, "layernorm_embedding", True) |
|
args.checkpoint_activations = getattr(args, "checkpoint_activations", False) |
|
args.offload_activations = getattr(args, "offload_activations", False) |
|
if args.offload_activations: |
|
args.checkpoint_activations = True |
|
|