File size: 18,111 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]

import logging
from dataclasses import dataclass, field
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from apex.normalization import FusedLayerNorm as LayerNorm
from fairseq import utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model, register_model_architecture
from fairseq.models.squad import SQuADHead
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding
from fairseq.modules import PositionalEmbedding
from omegaconf import II

from torchscale.architecture.config import EncoderConfig

from .machine_translation import MTEncoder as Encoder

DEFAULT_MAX_SOURCE_POSITIONS = 1024

logger = logging.getLogger(__name__)


@dataclass
class BertConfig(FairseqDataclass):
    activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
        default="relu", metadata={"help": "activation function to use"}
    )
    dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
    attention_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability for attention weights"}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability after activation in FFN."}
    )
    encoder_embed_dim: int = field(
        default=512, metadata={"help": "encoder embedding dimension"}
    )
    encoder_output_dim: int = field(
        default=512, metadata={"help": "encoder output dimension"}
    )
    encoder_input_dim: int = field(
        default=512, metadata={"help": "encoder input dimension"}
    )
    encoder_ffn_embed_dim: int = field(
        default=2048, metadata={"help": "encoder embedding dimension for FFN"}
    )
    encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"})
    encoder_attention_heads: int = field(
        default=8, metadata={"help": "num encoder attention heads"}
    )
    encoder_normalize_before: bool = field(
        default=False, metadata={"help": "apply layernorm before each encoder block"}
    )
    no_encoder_final_norm: bool = field(
        default=False,
        metadata={"help": "don't add an extra layernorm after the last encoder block"},
    )
    no_token_positional_embeddings: bool = field(
        default=False,
        metadata={
            "help": "if set, disables positional embeddings (outside self attention)"
        },
    )
    share_encoder_input_output_embed: bool = field(
        default=False, metadata={"help": "share encoder input and output embeddings"}
    )
    encoder_learned_pos: bool = field(
        default=False,
        metadata={"help": "use learned positional embeddings in the encoder"},
    )
    layernorm_embedding: bool = field(
        default=False, metadata={"help": "add layernorm to embedding"}
    )
    no_scale_embedding: bool = field(
        default=False, metadata={"help": "if True, dont scale embeddings"}
    )
    checkpoint_activations: bool = field(
        default=False, metadata={"help": "checkpoint activations at each layer"}
    )
    offload_activations: bool = field(
        default=False,
        metadata={"help": "move checkpointed activations to CPU after they are used."},
    )
    # config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
    encoder_layerdrop: float = field(
        default=0.0, metadata={"help": "LayerDrop probability for encoder"}
    )
    encoder_layers_to_keep: Optional[str] = field(
        default=None,
        metadata={
            "help": "which layers to *keep* when pruning as a comma-separated list"
        },
    )
    # config for Fully Sharded Data Parallel (FSDP) training
    min_params_to_wrap: int = field(
        default=DEFAULT_MIN_PARAMS_TO_WRAP,
        metadata={
            "help": (
                "minimum number of params for a layer to be wrapped with FSDP() when "
                "training with --ddp-backend=fully_sharded. Smaller values will "
                "improve memory efficiency, but may make torch.distributed "
                "communication less efficient due to smaller input sizes. This option "
                "is set to 0 (i.e., always wrap) when --checkpoint-activations or "
                "--offload-activations are passed."
            )
        },
    )
    max_source_positions: int = field(
        default=1024, metadata={"help": "max source positions"}
    )
    pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
        default="relu", metadata={"help": "activation function to use for pooler layer"}
    )
    pooler_dropout: float = field(
        default=0.0,
        metadata={"help": "dropout probability in the masked_lm pooler layers"},
    )
    # options from other parts of the config
    # add_bos_token: bool = II("task.add_bos_token")
    # tokens_per_sample: int = II("task.tokens_per_sample")
    tpu: bool = II("common.tpu")
    rel_pos_buckets: int = field(default=0, metadata={"help": ""})
    max_rel_pos: int = field(default=0, metadata={"help": ""})
    moe_freq: int = field(
        default=0,
        metadata={"help": "Frequency at which we insert MoE Transformer layers"},
    )
    moe_expert_count: int = field(
        default=0, metadata={"help": "Number of experts in each MoE Layer"}
    )
    moe_gating_use_fp32: bool = field(
        default=False,
        metadata={"help": "Use FP32 computations in MoE top2 gating function"},
    )
    moe_second_expert_policy: str = field(
        default="sampling",
        metadata={"help": "policy for second expert, options: all/sampling/random"},
    )
    moe_normalize_gate_prob_before_dropping: bool = field(
        default=False,
        metadata={
            "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization"
        },
    )
    moe_expert_ffn_dim: Optional[int] = field(
        default=None, metadata={"help": "MoE expert FFN dimension"}
    )
    moe_top1_expert: Optional[bool] = field(
        default=False, metadata={"help": "Use top1 gate instead of top2"}
    )
    moe_eval_capacity_token_fraction: Optional[float] = field(
        default=0.25,
        metadata={
            "help": (
                "Default: 0.25, Fraction of tokens as capacity during validation, "
                "if set to negative, use same as training. range: (0.0, 1.0]."
            )
        },
    )
    moe_normalize_expert_grad: Optional[str] = field(
        default="world_size",
        metadata={
            "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'"
        },
    )
    record_a2a_perf_stats: Optional[bool] = field(
        default=False,
        metadata={"help": "records all to all perf stats during distributed training"},
    )
    dummy_a2a: Optional[bool] = field(
        default=False,
        metadata={
            "help": "By passes all to all during distributed training by returning the input buffer as output"
        },
    )
    moe_batch_prioritized_routing: Optional[bool] = field(
        default=False,
        metadata={
            "help": "if true orders token by the gate prob before capacity dropping."
        },
    )
    ddp_rank: int = II("distributed_training.distributed_rank")
    deepnorm: Optional[bool] = field(
        default=False,
    )
    subln: Optional[bool] = field(
        default=False,
    )


@register_model("mlm", dataclass=BertConfig)
class BertModel(BaseFairseqModel):
    def __init__(self, args, encoder):
        super().__init__()
        self.args = args
        self.encoder = encoder
        self.padding_idx = self.encoder.embed_tokens.padding_idx
        self.classification_heads = nn.ModuleDict()

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        args.max_source_positions = getattr(
            args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS
        )

        embed_tokens = cls.build_embedding(
            args, task.dictionary, args.encoder_embed_dim
        )

        embed_positions = (
            PositionalEmbedding(
                args.max_source_positions,
                args.encoder_embed_dim,
                task.dictionary.pad(),
                learned=args.encoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        lm_head = cls.build_lm_head(
            args,
            args.encoder_embed_dim,
            len(task.dictionary),
            args.activation_fn,
            weight=embed_tokens.weight,
        )

        config = EncoderConfig()
        config.override(args)

        encoder = Encoder(
            config,
            embed_tokens=embed_tokens,
            embed_positions=embed_positions,
            output_projection=lm_head,
            is_encoder_decoder=False,
            dictionary=task.dictionary,
        )

        return cls(args, encoder)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
        return embed_tokens

    @classmethod
    def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight):
        return LMHead(embed_dim, output_dim, activation_fn, weight)

    def output_layer(self, features, masked_tokens=None):
        return self.encoder.output_projection(features, masked_tokens=masked_tokens)

    def register_classification_head(
        self, name, num_classes=None, inner_dim=None, **kwargs
    ):
        """Register a classification head."""
        if name in self.classification_heads:
            prev_num_classes = self.classification_heads[name].out_proj.out_features
            prev_inner_dim = self.classification_heads[name].dense.out_features
            if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
                logger.warning(
                    're-registering head "{}" with num_classes {} (prev: {}) '
                    "and inner_dim {} (prev: {})".format(
                        name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
                    )
                )
        self.classification_heads[name] = ClassificationHead(
            self.args.encoder_embed_dim,
            inner_dim or self.args.encoder_embed_dim,
            num_classes,
            self.args.pooler_activation_fn,
            self.args.pooler_dropout,
        )

    def register_question_answering_head(self, name, num_classes=None):
        self.classification_heads[name] = SQuADHead(
            self.args.encoder_embed_dim,
        )

    def upgrade_state_dict_named(self, state_dict, name):
        prefix = name + "." if name != "" else ""

        # upgrade children modules
        super().upgrade_state_dict_named(state_dict, name)

        # Handle new classification heads present in the state dict.
        current_head_names = (
            []
            if not hasattr(self, "classification_heads")
            else self.classification_heads.keys()
        )
        keys_to_delete = []
        for k in state_dict.keys():
            if not k.startswith(prefix + "classification_heads."):
                continue

            head_name = k[len(prefix + "classification_heads.") :].split(".")[0]  # noqa: E203
            num_classes = state_dict[
                prefix + "classification_heads." + head_name + ".out_proj.weight"
            ].size(0)
            inner_dim = state_dict[
                prefix + "classification_heads." + head_name + ".dense.weight"
            ].size(0)

            if getattr(self.args, "load_checkpoint_heads", False):
                if head_name not in current_head_names:
                    self.register_classification_head(head_name, num_classes, inner_dim)
            else:
                if head_name not in current_head_names:
                    logger.warning(
                        "deleting classification head ({}) from checkpoint "
                        "not present in current model: {}".format(head_name, k)
                    )
                    keys_to_delete.append(k)
                elif (
                    num_classes
                    != self.classification_heads[head_name].out_proj.out_features
                    or inner_dim
                    != self.classification_heads[head_name].dense.out_features
                ):
                    logger.warning(
                        "deleting classification head ({}) from checkpoint "
                        "with different dimensions than current model: {}".format(
                            head_name, k
                        )
                    )
                    keys_to_delete.append(k)
        for k in keys_to_delete:
            del state_dict[k]

        # Copy any newly-added classification heads into the state dict
        # with their current weights.
        if hasattr(self, "classification_heads"):
            cur_state = self.classification_heads.state_dict()
            for k, v in cur_state.items():
                if prefix + "classification_heads." + k not in state_dict:
                    logger.info("Overwriting " + prefix + "classification_heads." + k)
                    state_dict[prefix + "classification_heads." + k] = v

    def forward(
        self,
        src_tokens=None,
        features_only=False,
        return_all_hiddens=False,
        classification_head_name=None,
        masked_tokens=None,
        **kwargs
    ):
        encoder_out = self.encoder(
            src_tokens, features_only=True, return_all_hiddens=return_all_hiddens
        )
        x, extra = encoder_out["encoder_out"], encoder_out
        x = x.transpose(0, 1)

        if classification_head_name is not None:
            x = self.classification_heads[classification_head_name](x)
        elif not features_only:
            x = self.output_layer(x, masked_tokens=masked_tokens)

        return x, extra


class ClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(
        self,
        input_dim,
        inner_dim,
        num_classes,
        activation_fn,
        pooler_dropout,
    ):
        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = self.activation_fn(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


class LMHead(nn.Module):
    """Head for masked language modeling."""

    def __init__(self, embed_dim, output_dim, activation_fn, weight=None):
        super().__init__()
        self.dense = nn.Linear(embed_dim, embed_dim)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.layer_norm = LayerNorm(embed_dim)

        if weight is None:
            weight = nn.Linear(embed_dim, output_dim, bias=False).weight
        self.weight = weight
        self.bias = nn.Parameter(torch.zeros(output_dim))

    def forward(self, features, masked_tokens=None, **kwargs):
        # Only project the masked tokens while training,
        # saves both memory and computation
        if masked_tokens is not None:
            features = features[masked_tokens, :]

        x = self.dense(features)
        x = self.activation_fn(x)
        x = self.layer_norm(x)
        # project back to size of vocabulary with bias
        x = F.linear(x, self.weight) + self.bias
        return x


@register_model_architecture("mlm", "mlm_base")
def base_unilm_architecture(args):
    if hasattr(args, "encoder_final_norm"):
        args.no_encoder_final_norm = not args.encoder_final_norm

    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)

    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")

    args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
    args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)

    # args.add_bos_token = getattr(args, "add_bos_token", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.share_encoder_input_output_embed = getattr(
        args, "share_encoder_input_output_embed", True
    )
    args.encoder_output_dim = getattr(
        args, "encoder_output_dim", args.encoder_embed_dim
    )
    args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim)

    # Model training is not stable without this
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True