Tzktz's picture
Upload 7664 files
6fc683c verified
import os
import sys
from pathlib import Path
import textwrap
import re
import ast
import os
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
pylab.rcParams['figure.figsize'] = 20, 12
import cv2
import base64
import io
from decode_string import decode_bbox_from_caption
EOD_SYMBOL = "</doc>"
BOI_SYMBOL = "<image>"
EOI_SYMBOL = "</image>"
EOC_SYMBOL = "</chunk>"
EOL_SYMBOL = "</line>"
BOP_SYMBOL="<phrase>"
EOP_SYMBOL="</phrase>"
BOO_SYMBOL="<object>"
EOO_SYMBOL="</object>"
DOM_SYMBOL="</delimiter_of_multi_objects/>"
SPECIAL_SYMBOLS = [EOD_SYMBOL, BOI_SYMBOL, EOI_SYMBOL, EOC_SYMBOL, EOL_SYMBOL]
def add_location_symbols(quantized_size):
custom_sp_symbols = []
for symbol in SPECIAL_SYMBOLS:
custom_sp_symbols.append(symbol)
for symbol in [BOP_SYMBOL, EOP_SYMBOL, BOO_SYMBOL, EOO_SYMBOL, DOM_SYMBOL]:
custom_sp_symbols.append(symbol)
for i in range(quantized_size ** 2):
token_name = f"<patch_index_{str(i).zfill(4)}>"
custom_sp_symbols.append(token_name)
return custom_sp_symbols
def imshow(img, file_name = "tmp.jpg", caption='test'):
# Create figure and axis objects
fig, ax = plt.subplots()
# Show image on axis
ax.imshow(img[:, :, [2, 1, 0]])
ax.set_axis_off()
# Set caption text
# Add caption below image
# ax.text(0.5, -0.1, caption, ha='center', transform=ax.transAxes)
ax.text(0.5, -0.1, '\n'.join(textwrap.wrap(caption, 120)), ha='center', transform=ax.transAxes, fontsize=18)
plt.savefig(file_name)
plt.close()
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def draw_entity_box_on_image(image, collect_entity_location):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
if len(collect_entity_location) == 0:
return image
new_image = image.copy()
previous_locations = []
previous_bboxes = []
text_offset = 10
text_offset_original = 4
text_size = max(0.07 * min(image_h, image_w) / 100, 0.5)
text_line = int(max(1 * min(image_h, image_w) / 512, 1))
box_line = int(max(2 * min(image_h, image_w) / 512, 2))
text_height = text_offset # init
for (phrase, x1_norm, y1_norm, x2_norm, y2_norm) in collect_entity_location:
x1, y1, x2, y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
# draw bbox
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (x1, y1), (x2, y2), color, box_line)
# add phrase name
# decide the text location first
for x_prev, y_prev in previous_locations:
if abs(x1 - x_prev) < abs(text_offset) and abs(y1 - y_prev) < abs(text_offset):
y1 += text_height
if y1 < 2 * text_offset:
y1 += text_offset + text_offset_original
# add text background
(text_width, text_height), _ = cv2.getTextSize(phrase, cv2.FONT_HERSHEY_SIMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - text_height - text_offset_original, x1 + text_width, y1
for prev_bbox in previous_bboxes:
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += text_offset
text_bg_y2 += text_offset
y1 += text_offset
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - text_height - text_offset_original)
text_bg_y2 = image_h
y1 = max(0, image_h - text_height - text_offset_original + text_offset)
break
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(color)).astype(np.uint8)
cv2.putText(
new_image, phrase, (x1, y1 - text_offset_original), cv2.FONT_HERSHEY_SIMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
return new_image
def visualize_results_on_image(img_path, caption, quantized_size=16, save_path=f"show_box_on_image.jpg", show=True):
# collect_entity_location = decode_phrase_with_bbox_from_caption(caption, quantized_size=quantized_size)
collect_entity_location = decode_bbox_from_caption(caption, quantized_size=quantized_size)
image = draw_entity_box_on_image(img_path, collect_entity_location)
if show:
imshow(image, file_name=save_path, caption=caption)
else:
# return a PIL Image
image = image[:, :, [2, 1, 0]]
pil_image = Image.fromarray(image)
return pil_image
if __name__ == "__main__":
caption = "a wet suit is at <object><patch_index_0003><patch_index_0004></delimiter_of_multi_objects/><patch_index_0005><patch_index_0006></object> in the picture"
print(decode_bbox_from_caption(caption))