File size: 6,601 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import sys
from pathlib import Path
import textwrap
import re

import ast
import os
import numpy as np
import torch
import torchvision.transforms as T

from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
pylab.rcParams['figure.figsize'] = 20, 12

import cv2
import base64
import io

from decode_string import decode_bbox_from_caption

EOD_SYMBOL = "</doc>"
BOI_SYMBOL = "<image>"
EOI_SYMBOL = "</image>"
EOC_SYMBOL = "</chunk>"
EOL_SYMBOL = "</line>"

BOP_SYMBOL="<phrase>"
EOP_SYMBOL="</phrase>"
BOO_SYMBOL="<object>"
EOO_SYMBOL="</object>"
DOM_SYMBOL="</delimiter_of_multi_objects/>"

SPECIAL_SYMBOLS = [EOD_SYMBOL, BOI_SYMBOL, EOI_SYMBOL, EOC_SYMBOL, EOL_SYMBOL]

def add_location_symbols(quantized_size):
    custom_sp_symbols = []
    for symbol in SPECIAL_SYMBOLS:
        custom_sp_symbols.append(symbol)
    for symbol in [BOP_SYMBOL, EOP_SYMBOL, BOO_SYMBOL, EOO_SYMBOL, DOM_SYMBOL]:
        custom_sp_symbols.append(symbol)
    for i in range(quantized_size ** 2):
        token_name = f"<patch_index_{str(i).zfill(4)}>"
        custom_sp_symbols.append(token_name)
    return custom_sp_symbols

def imshow(img, file_name = "tmp.jpg", caption='test'):
    # Create figure and axis objects
    fig, ax = plt.subplots()
    # Show image on axis
    ax.imshow(img[:, :, [2, 1, 0]])
    ax.set_axis_off()
    # Set caption text
    # Add caption below image
    # ax.text(0.5, -0.1, caption, ha='center', transform=ax.transAxes)
    ax.text(0.5, -0.1, '\n'.join(textwrap.wrap(caption, 120)), ha='center', transform=ax.transAxes, fontsize=18)
    plt.savefig(file_name)
    plt.close()

def is_overlapping(rect1, rect2):  
    x1, y1, x2, y2 = rect1  
    x3, y3, x4, y4 = rect2  
    return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) 

def draw_entity_box_on_image(image, collect_entity_location):  
    """_summary_

    Args:
        image (_type_): image or image path
        collect_entity_location (_type_): _description_
    """
    if isinstance(image, Image.Image):
        image_h = image.height
        image_w = image.width
        image = np.array(image)[:, :, [2, 1, 0]]
    elif isinstance(image, str):
        if os.path.exists(image):
            pil_img = Image.open(image).convert("RGB")
            image = np.array(pil_img)[:, :, [2, 1, 0]]
            image_h = pil_img.height
            image_w = pil_img.width
        else:
            raise ValueError(f"invaild image path, {image}")
    elif isinstance(image, torch.Tensor):
        # pdb.set_trace()
        image_tensor = image.cpu()
        reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
        reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
        image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
        pil_img = T.ToPILImage()(image_tensor)
        image_h = pil_img.height
        image_w = pil_img.width
        image = np.array(pil_img)[:, :, [2, 1, 0]]
    else:
        raise ValueError(f"invaild image format, {type(image)} for {image}")
    
    if len(collect_entity_location) == 0:
        return image

    new_image = image.copy()
    previous_locations = []
    previous_bboxes = []
    text_offset = 10
    text_offset_original = 4
    text_size = max(0.07 * min(image_h, image_w) / 100, 0.5)
    text_line = int(max(1 * min(image_h, image_w) / 512, 1))
    box_line = int(max(2 * min(image_h, image_w) / 512, 2))
    text_height = text_offset # init
    for (phrase, x1_norm, y1_norm, x2_norm, y2_norm) in collect_entity_location:  
        x1, y1, x2, y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
        # draw bbox
        # random color
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        new_image = cv2.rectangle(new_image, (x1, y1), (x2, y2), color, box_line)
        
        # add phrase name  
        # decide the text location first  
        for x_prev, y_prev in previous_locations:  
            if abs(x1 - x_prev) < abs(text_offset) and abs(y1 - y_prev) < abs(text_offset):  
                y1 += text_height  
  
        if y1 < 2 * text_offset:  
            y1 += text_offset + text_offset_original  

        # add text background
        (text_width, text_height), _ = cv2.getTextSize(phrase, cv2.FONT_HERSHEY_SIMPLEX, text_size, text_line)  
        text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - text_height - text_offset_original, x1 + text_width, y1  
        
        for prev_bbox in previous_bboxes:  
            while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):  
                text_bg_y1 += text_offset  
                text_bg_y2 += text_offset  
                y1 += text_offset 
                
                if text_bg_y2 >= image_h:  
                    text_bg_y1 = max(0, image_h - text_height - text_offset_original)  
                    text_bg_y2 = image_h  
                    y1 = max(0, image_h - text_height - text_offset_original + text_offset)  
                    break 
        
        alpha = 0.5  
        for i in range(text_bg_y1, text_bg_y2):  
            for j in range(text_bg_x1, text_bg_x2):  
                if i < image_h and j < image_w: 
                    new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(color)).astype(np.uint8) 
        
        cv2.putText(  
            new_image, phrase, (x1, y1 - text_offset_original), cv2.FONT_HERSHEY_SIMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA  
        )  
        previous_locations.append((x1, y1))  
        previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
  
    return new_image  


def visualize_results_on_image(img_path, caption, quantized_size=16, save_path=f"show_box_on_image.jpg", show=True):
    # collect_entity_location = decode_phrase_with_bbox_from_caption(caption, quantized_size=quantized_size)
    collect_entity_location = decode_bbox_from_caption(caption, quantized_size=quantized_size)
    image = draw_entity_box_on_image(img_path, collect_entity_location)
    if show:
        imshow(image, file_name=save_path, caption=caption)
    else:
        # return a PIL Image
        image = image[:, :, [2, 1, 0]]
        pil_image = Image.fromarray(image)  
        return pil_image
    
if __name__ == "__main__":

    
    caption = "a wet suit is at <object><patch_index_0003><patch_index_0004></delimiter_of_multi_objects/><patch_index_0005><patch_index_0006></object> in the picture" 
    print(decode_bbox_from_caption(caption))