Tzktz's picture
Upload 7664 files
6fc683c verified
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Run inference for pre-processed data with a trained model.
"""
import logging
import math
import os
import sentencepiece as spm
import torch
from fairseq import checkpoint_utils, options, progress_bar, utils, tasks
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.utils import import_user_module
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def add_asr_eval_argument(parser):
parser.add_argument("--kspmodel", default=None, help="sentence piece model")
parser.add_argument(
"--wfstlm", default=None, help="wfstlm on dictonary output units"
)
parser.add_argument(
"--rnnt_decoding_type",
default="greedy",
help="wfstlm on dictonary\
output units",
)
parser.add_argument(
"--lm-weight",
"--lm_weight",
type=float,
default=0.2,
help="weight for lm while interpolating with neural score",
)
parser.add_argument(
"--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level"
)
parser.add_argument(
"--w2l-decoder", choices=["viterbi", "kenlm"], help="use a w2l decoder"
)
parser.add_argument("--lexicon", help="lexicon for w2l decoder")
parser.add_argument("--kenlm-model", help="kenlm model for w2l decoder")
parser.add_argument("--beam-threshold", type=float, default=25.0)
parser.add_argument("--word-score", type=float, default=1.0)
parser.add_argument("--unk-weight", type=float, default=-math.inf)
parser.add_argument("--sil-weight", type=float, default=0.0)
return parser
def check_args(args):
assert args.path is not None, "--path required for generation!"
assert args.results_path is not None, "--results_path required for generation!"
assert (
not args.sampling or args.nbest == args.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
args.replace_unk is None or args.raw_text
), "--replace-unk requires a raw text dataset (--raw-text)"
def get_dataset_itr(args, task):
return task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=(1000000.0, 1000000.0),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
def process_predictions(
args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id
):
for hypo in hypos[: min(len(hypos), args.nbest)]:
hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu())
hyp_words = sp.DecodePieces(hyp_pieces.split())
print(
"{} ({}-{})".format(hyp_pieces, speaker, id), file=res_files["hypo.units"]
)
print("{} ({}-{})".format(hyp_words, speaker, id), file=res_files["hypo.words"])
tgt_pieces = tgt_dict.string(target_tokens)
tgt_words = sp.DecodePieces(tgt_pieces.split())
print("{} ({}-{})".format(tgt_pieces, speaker, id), file=res_files["ref.units"])
print("{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"])
# only score top hypothesis
if not args.quiet:
logger.debug("HYPO:" + hyp_words)
logger.debug("TARGET:" + tgt_words)
logger.debug("___________________")
def prepare_result_files(args):
def get_res_file(file_prefix):
path = os.path.join(
args.results_path,
"{}-{}-{}.txt".format(
file_prefix, os.path.basename(args.path), args.gen_subset
),
)
return open(path, "w", buffering=1)
return {
"hypo.words": get_res_file("hypo.word"),
"hypo.units": get_res_file("hypo.units"),
"ref.words": get_res_file("ref.word"),
"ref.units": get_res_file("ref.units"),
}
def load_models_and_criterions(filenames, arg_overrides=None, task=None):
models = []
criterions = []
for filename in filenames:
if not os.path.exists(filename):
raise IOError("Model file not found: {}".format(filename))
state = checkpoint_utils.load_checkpoint_to_cpu(filename, arg_overrides)
args = state["args"]
if task is None:
task = tasks.setup_task(args)
# build model for ensemble
model = task.build_model(args)
model.load_state_dict(state["model"], strict=True)
models.append(model)
criterion = task.build_criterion(args)
if "criterion" in state:
criterion.load_state_dict(state["criterion"], strict=True)
criterions.append(criterion)
return models, criterions, args
def optimize_models(args, use_cuda, models):
"""Optimize ensemble for generation
"""
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
if use_cuda:
model.cuda()
def main(args):
check_args(args)
import_user_module(args)
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 30000
logger.info(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
logger.info(
"| {} {} {} examples".format(
args.data, args.gen_subset, len(task.dataset(args.gen_subset))
)
)
# Set dictionary
tgt_dict = task.target_dictionary
logger.info("| decoding with criterion {}".format(args.criterion))
# Load ensemble
logger.info("| loading model(s) from {}".format(args.path))
models, criterions, _model_args = load_models_and_criterions(
args.path.split(":"),
arg_overrides=eval(args.model_overrides), # noqa
task=task,
)
optimize_models(args, use_cuda, models)
# hack to pass transitions to W2lDecoder
if args.criterion == "asg_loss":
trans = criterions[0].asg.trans.data
args.asg_transitions = torch.flatten(trans).tolist()
# Load dataset (possibly sharded)
itr = get_dataset_itr(args, task)
# Initialize generator
gen_timer = StopwatchMeter()
generator = task.build_generator(args)
num_sentences = 0
if not os.path.exists(args.results_path):
os.makedirs(args.results_path)
sp = spm.SentencePieceProcessor()
sp.Load(os.path.join(args.data, "spm.model"))
res_files = prepare_result_files(args)
with progress_bar.build_progress_bar(args, itr) as t:
wps_meter = TimeMeter()
for sample in t:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
continue
prefix_tokens = None
if args.prefix_size > 0:
prefix_tokens = sample["target"][:, : args.prefix_size]
gen_timer.start()
hypos = task.inference_step(generator, models, sample, prefix_tokens)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i, sample_id in enumerate(sample["id"].tolist()):
speaker = task.dataset(args.gen_subset).speakers[int(sample_id)]
id = task.dataset(args.gen_subset).ids[int(sample_id)]
target_tokens = (
utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
)
# Process top predictions
process_predictions(
args, hypos[i], sp, tgt_dict, target_tokens, res_files, speaker, id
)
wps_meter.update(num_generated_tokens)
t.log({"wps": round(wps_meter.avg)})
num_sentences += sample["nsentences"]
logger.info(
"| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
"sentences/s, {:.2f} tokens/s)".format(
num_sentences,
gen_timer.n,
gen_timer.sum,
num_sentences / gen_timer.sum,
1.0 / gen_timer.avg,
)
)
logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam))
def cli_main():
parser = options.get_generation_parser()
parser = add_asr_eval_argument(parser)
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()