File size: 8,916 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Run inference for pre-processed data with a trained model.
"""

import logging
import math
import os

import sentencepiece as spm
import torch
from fairseq import checkpoint_utils, options, progress_bar, utils, tasks
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.utils import import_user_module


logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def add_asr_eval_argument(parser):
    parser.add_argument("--kspmodel", default=None, help="sentence piece model")
    parser.add_argument(
        "--wfstlm", default=None, help="wfstlm on dictonary output units"
    )
    parser.add_argument(
        "--rnnt_decoding_type",
        default="greedy",
        help="wfstlm on dictonary\
output units",
    )
    parser.add_argument(
        "--lm-weight",
        "--lm_weight",
        type=float,
        default=0.2,
        help="weight for lm while interpolating with neural score",
    )
    parser.add_argument(
        "--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level"
    )
    parser.add_argument(
        "--w2l-decoder", choices=["viterbi", "kenlm"], help="use a w2l decoder"
    )
    parser.add_argument("--lexicon", help="lexicon for w2l decoder")
    parser.add_argument("--kenlm-model", help="kenlm model for w2l decoder")
    parser.add_argument("--beam-threshold", type=float, default=25.0)
    parser.add_argument("--word-score", type=float, default=1.0)
    parser.add_argument("--unk-weight", type=float, default=-math.inf)
    parser.add_argument("--sil-weight", type=float, default=0.0)
    return parser


def check_args(args):
    assert args.path is not None, "--path required for generation!"
    assert args.results_path is not None, "--results_path required for generation!"
    assert (
        not args.sampling or args.nbest == args.beam
    ), "--sampling requires --nbest to be equal to --beam"
    assert (
        args.replace_unk is None or args.raw_text
    ), "--replace-unk requires a raw text dataset (--raw-text)"


def get_dataset_itr(args, task):
    return task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=(1000000.0, 1000000.0),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)


def process_predictions(
    args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id
):
    for hypo in hypos[: min(len(hypos), args.nbest)]:
        hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu())
        hyp_words = sp.DecodePieces(hyp_pieces.split())
        print(
            "{} ({}-{})".format(hyp_pieces, speaker, id), file=res_files["hypo.units"]
        )
        print("{} ({}-{})".format(hyp_words, speaker, id), file=res_files["hypo.words"])

        tgt_pieces = tgt_dict.string(target_tokens)
        tgt_words = sp.DecodePieces(tgt_pieces.split())
        print("{} ({}-{})".format(tgt_pieces, speaker, id), file=res_files["ref.units"])
        print("{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"])
        # only score top hypothesis
        if not args.quiet:
            logger.debug("HYPO:" + hyp_words)
            logger.debug("TARGET:" + tgt_words)
            logger.debug("___________________")


def prepare_result_files(args):
    def get_res_file(file_prefix):
        path = os.path.join(
            args.results_path,
            "{}-{}-{}.txt".format(
                file_prefix, os.path.basename(args.path), args.gen_subset
            ),
        )
        return open(path, "w", buffering=1)

    return {
        "hypo.words": get_res_file("hypo.word"),
        "hypo.units": get_res_file("hypo.units"),
        "ref.words": get_res_file("ref.word"),
        "ref.units": get_res_file("ref.units"),
    }


def load_models_and_criterions(filenames, arg_overrides=None, task=None):
    models = []
    criterions = []
    for filename in filenames:
        if not os.path.exists(filename):
            raise IOError("Model file not found: {}".format(filename))
        state = checkpoint_utils.load_checkpoint_to_cpu(filename, arg_overrides)

        args = state["args"]
        if task is None:
            task = tasks.setup_task(args)

        # build model for ensemble
        model = task.build_model(args)
        model.load_state_dict(state["model"], strict=True)
        models.append(model)

        criterion = task.build_criterion(args)
        if "criterion" in state:
            criterion.load_state_dict(state["criterion"], strict=True)
        criterions.append(criterion)
    return models, criterions, args


def optimize_models(args, use_cuda, models):
    """Optimize ensemble for generation
    """
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()


def main(args):
    check_args(args)
    import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 30000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)
    logger.info(
        "| {} {} {} examples".format(
            args.data, args.gen_subset, len(task.dataset(args.gen_subset))
        )
    )

    # Set dictionary
    tgt_dict = task.target_dictionary

    logger.info("| decoding with criterion {}".format(args.criterion))

    # Load ensemble
    logger.info("| loading model(s) from {}".format(args.path))
    models, criterions, _model_args = load_models_and_criterions(
        args.path.split(":"),
        arg_overrides=eval(args.model_overrides),  # noqa
        task=task,
    )
    optimize_models(args, use_cuda, models)

    # hack to pass transitions to W2lDecoder
    if args.criterion == "asg_loss":
        trans = criterions[0].asg.trans.data
        args.asg_transitions = torch.flatten(trans).tolist()

    # Load dataset (possibly sharded)
    itr = get_dataset_itr(args, task)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    num_sentences = 0

    if not os.path.exists(args.results_path):
        os.makedirs(args.results_path)

    sp = spm.SentencePieceProcessor()
    sp.Load(os.path.join(args.data, "spm.model"))

    res_files = prepare_result_files(args)
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if "net_input" not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample["target"][:, : args.prefix_size]

            gen_timer.start()
            hypos = task.inference_step(generator, models, sample, prefix_tokens)
            num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample["id"].tolist()):
                speaker = task.dataset(args.gen_subset).speakers[int(sample_id)]
                id = task.dataset(args.gen_subset).ids[int(sample_id)]
                target_tokens = (
                    utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
                )
                # Process top predictions
                process_predictions(
                    args, hypos[i], sp, tgt_dict, target_tokens, res_files, speaker, id
                )

            wps_meter.update(num_generated_tokens)
            t.log({"wps": round(wps_meter.avg)})
            num_sentences += sample["nsentences"]

    logger.info(
        "| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
        "sentences/s, {:.2f} tokens/s)".format(
            num_sentences,
            gen_timer.n,
            gen_timer.sum,
            num_sentences / gen_timer.sum,
            1.0 / gen_timer.avg,
        )
    )
    logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam))


def cli_main():
    parser = options.get_generation_parser()
    parser = add_asr_eval_argument(parser)
    args = options.parse_args_and_arch(parser)
    main(args)


if __name__ == "__main__":
    cli_main()