Spaces:
Runtime error
Runtime error
| # Finetuning RoBERTa on GLUE tasks | |
| ### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands: | |
| ```bash | |
| wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py | |
| python download_glue_data.py --data_dir glue_data --tasks all | |
| ``` | |
| ### 2) Preprocess GLUE task data: | |
| ```bash | |
| ./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name> | |
| ``` | |
| `glue_task_name` is one of the following: | |
| `{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}` | |
| Use `ALL` for preprocessing all the glue tasks. | |
| ### 3) Fine-tuning on GLUE task: | |
| Example fine-tuning cmd for `RTE` task | |
| ```bash | |
| TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16 | |
| WARMUP_UPDATES=122 # 6 percent of the number of updates | |
| LR=2e-05 # Peak LR for polynomial LR scheduler. | |
| NUM_CLASSES=2 | |
| MAX_SENTENCES=16 # Batch size. | |
| ROBERTA_PATH=/path/to/roberta/model.pt | |
| CUDA_VISIBLE_DEVICES=0 python train.py RTE-bin/ \ | |
| --restore-file $ROBERTA_PATH \ | |
| --max-positions 512 \ | |
| --max-sentences $MAX_SENTENCES \ | |
| --max-tokens 4400 \ | |
| --task sentence_prediction \ | |
| --reset-optimizer --reset-dataloader --reset-meters \ | |
| --required-batch-size-multiple 1 \ | |
| --init-token 0 --separator-token 2 \ | |
| --arch roberta_large \ | |
| --criterion sentence_prediction \ | |
| --num-classes $NUM_CLASSES \ | |
| --dropout 0.1 --attention-dropout 0.1 \ | |
| --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ | |
| --clip-norm 0.0 \ | |
| --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ | |
| --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ | |
| --max-epoch 10 \ | |
| --find-unused-parameters \ | |
| --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric; | |
| ``` | |
| For each of the GLUE task, you will need to use following cmd-line arguments: | |
| Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B | |
| ---|---|---|---|---|---|---|---|--- | |
| `--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
| `--lr` | 1e-5 | 1e-5 | 1e-5 | 2e-5 | 1e-5 | 1e-5 | 1e-5 | 2e-5 | |
| `--max-sentences` | 32 | 32 | 32 | 16 | 32 | 16 | 16 | 16 | |
| `--total-num-update` | 123873 | 33112 | 113272 | 2036 | 20935 | 2296 | 5336 | 3598 | |
| `--warmup-updates` | 7432 | 1986 | 28318 | 122 | 1256 | 137 | 320 | 214 | |
| For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`. | |
| **Note:** | |
| a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--max-sentences=16/32` depending on the task. | |
| b) Above cmd-args and hyperparams are tested on one Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--max-sentences`. | |
| c) All the settings in above table are suggested settings based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search. | |
| ### Inference on GLUE task | |
| After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet: | |
| ```python | |
| from fairseq.models.roberta import RobertaModel | |
| roberta = RobertaModel.from_pretrained( | |
| 'checkpoints/', | |
| checkpoint_file='checkpoint_best.pt', | |
| data_name_or_path='RTE-bin' | |
| ) | |
| label_fn = lambda label: roberta.task.label_dictionary.string( | |
| [label + roberta.task.label_dictionary.nspecial] | |
| ) | |
| ncorrect, nsamples = 0, 0 | |
| roberta.cuda() | |
| roberta.eval() | |
| with open('glue_data/RTE/dev.tsv') as fin: | |
| fin.readline() | |
| for index, line in enumerate(fin): | |
| tokens = line.strip().split('\t') | |
| sent1, sent2, target = tokens[1], tokens[2], tokens[3] | |
| tokens = roberta.encode(sent1, sent2) | |
| prediction = roberta.predict('sentence_classification_head', tokens).argmax().item() | |
| prediction_label = label_fn(prediction) | |
| ncorrect += int(prediction_label == target) | |
| nsamples += 1 | |
| print('| Accuracy: ', float(ncorrect)/float(nsamples)) | |
| ``` | |