hassoudi's picture
Update app.py
a0e86e6 verified
raw
history blame
3.76 kB
import gradio as gr
from transformers import pipeline
import os
# Initialize global pipeline
ner_pipeline = None
def load_healthcare_ner_pipeline():
"""Load the Hugging Face pipeline for Healthcare NER."""
global ner_pipeline
if ner_pipeline is None:
ner_pipeline = pipeline(
"token-classification",
model="TypicaAI/HealthcareNER-Fr",
aggregation_strategy="first" # Groups B- and I- tokens into entities
)
return ner_pipeline
def process_text(text):
"""Process input text and return highlighted entities."""
pipeline = load_healthcare_ner_pipeline()
entities = pipeline(text)
return {"text": text, "entities": entities}
def log_demo_usage(text, num_entities):
"""Log demo usage for analytics."""
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
# Define the Gradio interface
# Create the Gradio layout
with gr.Blocks() as demo:
gr.Markdown("### French Healthcare NER Demo")
gr.Markdown(
"""
As featured in *Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face*.
"""
)
with gr.Row():
input_box = gr.Textbox(
label="Paste French medical text",
placeholder="Le patient présente une hypertension artérielle...",
lines=5
)
output_box = gr.HighlightedText(label="Identified Medical Entities")
submit_button = gr.Button("Analyze Text")
submit_button.click(fn=process_text, inputs=input_box, outputs=output_box)
gr.Markdown("### Examples")
gr.Examples(
examples=[
["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires e.g. pneumonie."],
["Dans le cas de l'asthme, le médecin peut recommander des corticoïdes pour réduire l'inflammation dans les poumons."],
["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
["Si le patient souffre de diabète de type 2, le médecin peut prescrire une insulinothérapie par exemple: Metformine 500mg."],
["Après une blessure musculaire ou une maladies douloureuses des tendons comme une tendinopathie, le patient pourrait suivre une kinésithérapie ou une physiothérapie."],
["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
],
inputs=input_box
)
# Footer/Disclaimer section
gr.Markdown(
"""
---
### Disclaimer
This is a **demo model** provided for educational purposes. It was trained on a limited dataset and is not intended for production use, clinical decision-making, or real-world medical applications.
"""
)
# Add marketing elements
with gr.Blocks() as marketing_elements:
gr.Markdown("""
### 📖 Get the Complete Guide
Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
- ✓ Step-by-step implementation
- ✓ Performance optimization
- ✓ Enterprise deployment patterns
- ✓ Complete source code
[Get the Book](https://a.co/d/eg7my5G)
""")
with gr.Row():
email_input = gr.Textbox(
label="Get the French Healthcare NER Dataset",
placeholder="Enter your business email"
)
submit_btn = gr.Button("Access Dataset")
# Launch the Gradio demo
if __name__ == "__main__":
demo.launch()