File size: 13,730 Bytes
19e1ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7a8e3
19e1ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f55ecaa
 
19e1ed6
 
 
 
 
f55ecaa
 
19e1ed6
3e7a8e3
 
 
 
f55ecaa
3e7a8e3
 
 
 
 
 
19e1ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f55ecaa
 
19e1ed6
 
f55ecaa
19e1ed6
 
 
f55ecaa
19e1ed6
 
 
2784605
 
 
 
 
 
 
f55ecaa
2784605
 
 
3e7a8e3
2784605
 
3e7a8e3
2784605
3e7a8e3
 
 
2784605
3e7a8e3
 
 
f55ecaa
3e7a8e3
19e1ed6
2784605
 
 
 
 
 
19e1ed6
2784605
19e1ed6
2784605
19e1ed6
 
 
2784605
 
19e1ed6
 
2784605
 
 
 
 
19e1ed6
2784605
 
19e1ed6
2784605
19e1ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f21c9d9
 
 
 
 
 
 
 
 
19e1ed6
f55ecaa
 
19e1ed6
f55ecaa
 
19e1ed6
f55ecaa
 
19e1ed6
 
b2842e8
f55ecaa
19e1ed6
 
c93ea92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f55ecaa
c93ea92
 
 
 
 
 
 
 
 
19e1ed6
c93ea92
 
 
19e1ed6
b2842e8
 
 
19e1ed6
f55ecaa
 
 
 
 
 
 
 
 
19e1ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7a8e3
19e1ed6
f21c9d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
import torch
import glob
import gc
from transformers import (
    AutoModelForCausalLM, 
    BitsAndBytesConfig, 
    TrainingArguments, 
    Trainer
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator

# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"

hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"

# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"

# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1

# Multi-GPU configuration
accelerator = Accelerator()

# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"

# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
    print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")

def seq2seq_causal_collator(features):
    """
    Collator that concatenates context (input_ids) and target (labels)
    for Causal LM sequence-to-sequence training.
    Masks the loss for the context part of the sequence.
    Pads sequences to the maximum length in the batch.
    """
    batch = {}
    concatenated_input_ids = []
    concatenated_labels = []
    max_len = 0

    # --- First pass: Concatenate, create masked labels, find max length ---
    for feature in features:
        # Dataset transform should provide tensors here
        input_ids = feature['input_ids']
        labels = feature['labels']

        # Ensure tensors are 1D (handle potential extra dims if any)
        if input_ids.dim() > 1: input_ids = input_ids.squeeze()
        if labels.dim() > 1: labels = labels.squeeze()

        context_len = input_ids.shape[0]
        target_len = labels.shape[0]

        # Concatenate context and target for input
        combined_ids = torch.cat([input_ids, labels], dim=0)
        concatenated_input_ids.append(combined_ids)

        # Create labels: -100 for context, actual labels for target
        masked_labels = torch.cat([
            torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
            labels
        ], dim=0)
        concatenated_labels.append(masked_labels)

        # Track max length for padding
        if combined_ids.shape[0] > max_len:
            max_len = combined_ids.shape[0]

    # --- Second pass: Pad to max length ---
    padded_input_ids = []
    padded_labels = []
    input_pad_token_id = 0
    label_pad_token_id = -100

    for i in range(len(features)):
        ids = concatenated_input_ids[i]
        lbls = concatenated_labels[i]

        padding_len = max_len - ids.shape[0]

        # Pad on the right side
        padded_input_ids.append(torch.nn.functional.pad(
            ids, (0, padding_len), value=input_pad_token_id
        ))
        padded_labels.append(torch.nn.functional.pad(
            lbls, (0, padding_len), value=label_pad_token_id
        ))

    # --- Stack and create final batch ---
    batch['input_ids'] = torch.stack(padded_input_ids)
    batch['labels'] = torch.stack(padded_labels)

    # Create attention mask (1 for real tokens, 0 for padding)
    batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()

    return batch

def prepare_for_dataset(batch):
    output = {'input_ids': [], 'labels': []}
    for item in batch:
        output['input_ids'].append(item['input_ids'].cpu().tolist())
        output['labels'].append(item['labels'].cpu().tolist())
    return output

def load_model():
    clean_memory()  # Start with clean memory
    
    print(f"Loading base model architecture from: {hf_model_repo_id}")
    
    # Even more extreme quantization
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.float16,  # Use float16 instead of bfloat16
        bnb_4bit_use_double_quant=True,
    )
    
    # For 4-bit training, we need to load on a single device
    # Choose GPU with most available memory
    free_memory = []
    for i in range(torch.cuda.device_count()):
        total_memory = torch.cuda.get_device_properties(i).total_memory
        reserved_memory = torch.cuda.memory_reserved(i)
        free_memory.append((total_memory - reserved_memory) / 1e9)  # Convert to GB
    
    # Choose the GPU with the most free memory
    target_gpu = free_memory.index(max(free_memory))
    print(f"Loading model on GPU {target_gpu} with {free_memory[target_gpu]:.2f}GB free memory")
    
    # Use target GPU for model loading (crucial for 4-bit training)
    device_map = {'': target_gpu}
    
    # Load model on the single target GPU
    model = AutoModelForCausalLM.from_pretrained(
        hf_model_repo_id,
        quantization_config=bnb_config,
        device_map=device_map,  # Place entire model on one GPU
        trust_remote_code=True,
        use_cache=False,
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True,
    )
    
    # Add print statement to check which device the model is on
    print(f"Model loaded on device: {next(model.parameters()).device}")
    
    # Continue with the LoRA config as before
    print(f"Loaded model vocab size: {model.get_input_embeddings().weight.shape[0]}")
    print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
    
    # --- Configure PEFT/LoRA ---
    lora_config = LoraConfig(
        r=16,  # rank
        lora_alpha=32,
        lora_dropout=0.05,
        bias="none",
        task_type=TaskType.CAUSAL_LM,
        target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    )
    
    # Prepare model for k-bit training
    model = prepare_model_for_kbit_training(model)
    
    # Add LoRA adapters
    model = get_peft_model(model, lora_config)
    
    # Log number of trainable parameters
    model.print_trainable_parameters()
    
    return model

def load_dataset():
    # --- Download the dataset repository files ---
    try:
        os.makedirs(local_download_path, exist_ok=True)
        downloaded_repo_root = snapshot_download(
            repo_id=hf_dataset_repo_id,
            repo_type="dataset",
            local_dir=local_download_path,
            local_dir_use_symlinks=False
        )
        print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
    except Exception as e:
        print(f"Error downloading dataset: {e}")
        return None
    
    # --- Load .pt files into a Hugging Face Dataset object ---
    pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
    all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
    
    if not all_pair_files:
        all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
        if not all_pair_files:
            print("No RVQ pair files found!")
            return None
    
    print(f"Found {len(all_pair_files)} RVQ pair files.")
    
    # Load data from .pt files into memory
    all_data_pairs = []
    for file_path in tqdm(all_pair_files, desc="Loading pair files"):
        try:
            episode_pairs = torch.load(file_path, map_location='cpu')
            all_data_pairs.extend(episode_pairs)
        except Exception as e:
            print(f"Warning: Could not load file {file_path}: {e}")
    
    if not all_data_pairs:
        return None
    
    print(f"Loaded {len(all_data_pairs)} training pairs.")
    
    # Convert to Hugging Face Dataset
    chunk_size = 1000
    processed_data = {'input_ids': [], 'labels': []}
    for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
        batch = all_data_pairs[i:i + chunk_size]
        prepared_batch = prepare_for_dataset(batch)
        processed_data['input_ids'].extend(prepared_batch['input_ids'])
        processed_data['labels'].extend(prepared_batch['labels'])
    
    hf_dataset = Dataset.from_dict(processed_data)
    
    # Transform to get tensors back
    hf_dataset.set_transform(lambda batch: {
        'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
        'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
    })
    
    # Cleanup
    del all_data_pairs
    del processed_data
    gc.collect()
    
    return hf_dataset

# Memory cleaning function
def clean_memory():
    gc.collect()
    if torch.cuda.is_available():
        for i in range(torch.cuda.device_count()):
            with torch.cuda.device(f'cuda:{i}'):
                torch.cuda.empty_cache()
                torch.cuda.reset_peak_memory_stats()

def train_model(progress=gr.Progress()):
    # Clean memory before starting
    clean_memory()
    
    # Load model with optimized memory settings
    model = load_model()
    
    # Load and prepare dataset
    progress(0.1, desc="Loading dataset...")
    train_dataset = load_dataset()
    
    # Initialize trainer with debug flags
    progress(0.2, desc="Initializing trainer...")
    
    try:
        # Set up training args with simplified settings
        training_args = TrainingArguments(
            output_dir="./results",
            num_train_epochs=1,             # Just 1 epoch for testing
            per_device_train_batch_size=1,  # Minimal batch size
            gradient_accumulation_steps=4,  # Reduce memory pressure
            warmup_steps=2,
            logging_steps=1,                # Log every step
            save_steps=10000,               # Don't save checkpoints during test
            learning_rate=2e-4,
            fp16=False,                     # Disable mixed precision for stability
            optim="adamw_torch",
            report_to="none",               # Disable wandb/tensorboard reporting
            max_steps=3,                    # Just try 3 steps to see if it works
            logging_first_step=True,        # Force log on first step
        )
        
        # Create a simple trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            data_collator=transformers.DataCollatorForLanguageModeling(
                tokenizer=None, mlm=False
            )
        )
        
        # Run training for just 3 steps
        progress(0.3, desc="Starting training (this may take 5-15 minutes for first step)...")
        trainer.train()
        
        progress(0.9, desc="Initial training successful! You can now run full training.")
        return "Initial training completed successfully! The system is working. You can now adjust parameters for a full training run."
    
    except Exception as e:
        error_msg = str(e)
        print(f"Training error: {error_msg}")
        
        # Add memory diagnostics to error message
        mem_info = "\nMemory status at error time:\n"
        for i in range(torch.cuda.device_count()):
            mem_info += f"GPU {i}: {torch.cuda.memory_allocated(i) / 1e9:.2f}GB allocated, {torch.cuda.memory_reserved(i) / 1e9:.2f}GB reserved\n"
        
        return f"An error occurred during training: {error_msg}\n{mem_info}"

# Create Gradio interface
def create_ui():
    with gr.Blocks() as demo:
        gr.Markdown("# Fine-tune LLaMA 3 8B with QLoRA")
        
        with gr.Tab("Training"):
            train_button = gr.Button("Start Fine-tuning")
            result_text = gr.Textbox(label="Training Results", interactive=False)
            
            train_button.click(train_model, outputs=result_text)
        
        with gr.Tab("About"):
            gr.Markdown("""
            ## Information
            This is a Hugging Face Space version of the original Google Colab notebook.
            
            It fine-tunes a quantized LLaMA 3 8B model using QLoRA on podcast dialogue data.
            
            ### Model
            - Base Model: {YOUR_HF_USERNAME}/{MODEL_REPO_NAME}
            - Using 4-bit quantization with LoRA adapters
            
            ### Dataset
            - Custom dataset: {YOUR_HF_USERNAME}/{DATASET_REPO_NAME}
            - Contains podcast dialogue pairs processed for training
            
            ### Training Setup
            - QLoRA fine-tuning
            - Epochs: {NUM_EPOCHS}
            - Batch size: {BATCH_SIZE_PER_DEVICE} with {GRAD_ACCUMULATION_STEPS} gradient accumulation steps
            - Learning rate: {LEARNING_RATE}
            """.format(
                YOUR_HF_USERNAME=YOUR_HF_USERNAME,
                MODEL_REPO_NAME=MODEL_REPO_NAME,
                DATASET_REPO_NAME=DATASET_REPO_NAME,
                NUM_EPOCHS=NUM_EPOCHS,
                BATCH_SIZE_PER_DEVICE=BATCH_SIZE_PER_DEVICE,
                GRAD_ACCUMULATION_STEPS=GRAD_ACCUMULATION_STEPS,
                LEARNING_RATE=LEARNING_RATE
            ))
    
    return demo

# Main entry point
if __name__ == "__main__":
    # Install dependencies first if needed
    # !pip install -q -U transformers accelerate bitsandbytes peft torch datasets huggingface_hub gradio
    
    # Create and launch the UI
    demo = create_ui()
    demo.launch()