Spaces:
Sleeping
Sleeping
File size: 13,897 Bytes
19e1ed6 fe289fa 19e1ed6 e036f13 fe289fa 19e1ed6 3e7a8e3 19e1ed6 f55ecaa 19e1ed6 f55ecaa 19e1ed6 3e7a8e3 f55ecaa 3e7a8e3 19e1ed6 fe289fa 19e1ed6 2784605 fe289fa f55ecaa fe289fa 3e7a8e3 fe289fa 3e7a8e3 fe289fa 3e7a8e3 fe289fa 3e7a8e3 19e1ed6 fe289fa 9295d60 2784605 fe289fa 2784605 19e1ed6 fe289fa 19e1ed6 fe289fa 19e1ed6 fe289fa 19e1ed6 fe289fa 19e1ed6 fe289fa 2784605 19e1ed6 fe289fa 19e1ed6 f21c9d9 19e1ed6 f55ecaa 19e1ed6 f55ecaa fe289fa 19e1ed6 f55ecaa 19e1ed6 b2842e8 f55ecaa 19e1ed6 c93ea92 f55ecaa fe289fa c93ea92 e036f13 fe289fa c93ea92 19e1ed6 c93ea92 19e1ed6 b2842e8 19e1ed6 f55ecaa 19e1ed6 3e7a8e3 19e1ed6 f21c9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
AutoTokenizer
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1
# Multi-GPU configuration
accelerator = Accelerator()
# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
print(f"Loading base model architecture from: {hf_model_repo_id}")
# Get information about GPU with most free memory
gpu_id = 0 # Default to first GPU
max_free_memory = 0
for i in range(torch.cuda.device_count()):
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
if free_memory > max_free_memory:
max_free_memory = free_memory
gpu_id = i
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
# Configure quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map={"": gpu_id},
torch_dtype=torch.bfloat16,
)
print(f"Model loaded on device: cuda:{gpu_id}")
# Load the official Meta tokenizer for LLaMA 3
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-3-8B", # Use the official Meta tokenizer
use_auth_token=os.environ.get("HF_TOKEN", None) # In case it's needed
)
if tokenizer is None:
# Fallback to another common foundation model tokenizer
print("Falling back to another tokenizer as Meta tokenizer requires auth token")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
# Print information about input embeddings
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
# Define LoRA configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)
# Apply LoRA to model
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer # Return both model and tokenizer
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
# Memory cleaning function
def clean_memory():
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(f'cuda:{i}'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_model(progress=gr.Progress()):
# Clean memory before starting
clean_memory()
# Load model with optimized memory settings
model, tokenizer = load_model()
# Load and prepare dataset
progress(0.1, desc="Loading dataset...")
train_dataset = load_dataset()
# Initialize trainer with debug flags
progress(0.2, desc="Initializing trainer...")
try:
# Set up training args with simplified settings
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=1, # Just 1 epoch for testing
per_device_train_batch_size=1, # Minimal batch size
gradient_accumulation_steps=4, # Reduce memory pressure
warmup_steps=2,
logging_steps=1, # Log every step
save_steps=10000, # Don't save checkpoints during test
learning_rate=2e-4,
fp16=False, # Disable mixed precision for stability
optim="adamw_torch",
report_to="none", # Disable wandb/tensorboard reporting
max_steps=3, # Just try 3 steps to see if it works
logging_first_step=True, # Force log on first step
)
# Create a simple trainer with the tokenizer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
)
# Run training for just 3 steps
progress(0.3, desc="Starting training (this may take 5-15 minutes for first step)...")
trainer.train()
progress(0.9, desc="Initial training successful! You can now run full training.")
return "Initial training completed successfully! The system is working. You can now adjust parameters for a full training run."
except Exception as e:
error_msg = str(e)
print(f"Training error: {error_msg}")
# Add memory diagnostics to error message
mem_info = "\nMemory status at error time:\n"
for i in range(torch.cuda.device_count()):
mem_info += f"GPU {i}: {torch.cuda.memory_allocated(i) / 1e9:.2f}GB allocated, {torch.cuda.memory_reserved(i) / 1e9:.2f}GB reserved\n"
return f"An error occurred during training: {error_msg}\n{mem_info}"
# Create Gradio interface
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# Fine-tune LLaMA 3 8B with QLoRA")
with gr.Tab("Training"):
train_button = gr.Button("Start Fine-tuning")
result_text = gr.Textbox(label="Training Results", interactive=False)
train_button.click(train_model, outputs=result_text)
with gr.Tab("About"):
gr.Markdown("""
## Information
This is a Hugging Face Space version of the original Google Colab notebook.
It fine-tunes a quantized LLaMA 3 8B model using QLoRA on podcast dialogue data.
### Model
- Base Model: {YOUR_HF_USERNAME}/{MODEL_REPO_NAME}
- Using 4-bit quantization with LoRA adapters
### Dataset
- Custom dataset: {YOUR_HF_USERNAME}/{DATASET_REPO_NAME}
- Contains podcast dialogue pairs processed for training
### Training Setup
- QLoRA fine-tuning
- Epochs: {NUM_EPOCHS}
- Batch size: {BATCH_SIZE_PER_DEVICE} with {GRAD_ACCUMULATION_STEPS} gradient accumulation steps
- Learning rate: {LEARNING_RATE}
""".format(
YOUR_HF_USERNAME=YOUR_HF_USERNAME,
MODEL_REPO_NAME=MODEL_REPO_NAME,
DATASET_REPO_NAME=DATASET_REPO_NAME,
NUM_EPOCHS=NUM_EPOCHS,
BATCH_SIZE_PER_DEVICE=BATCH_SIZE_PER_DEVICE,
GRAD_ACCUMULATION_STEPS=GRAD_ACCUMULATION_STEPS,
LEARNING_RATE=LEARNING_RATE
))
return demo
# Main entry point
if __name__ == "__main__":
# Install dependencies first if needed
# !pip install -q -U transformers accelerate bitsandbytes peft torch datasets huggingface_hub gradio
# Create and launch the UI
demo = create_ui()
demo.launch() |