Spaces:
Sleeping
Sleeping
File size: 12,560 Bytes
19e1ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
BitsAndBytesConfig,
TrainingArguments,
Trainer
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 2
GRAD_ACCUMULATION_STEPS = 4
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
# For HF Spaces, we use the system CUDA if available
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Loading base model architecture from: {hf_model_repo_id}")
print(f"Using device: {DEVICE}")
# --- Quantization Configuration ---
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
# --- Load Base Model (with quantization) ---
try:
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
print(f"Loaded model vocab size: {model.config.vocab_size}")
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
print(f"Error loading model: {e}")
return None
# --- Prepare for K-bit Training & Apply LoRA ---
model = prepare_model_for_kbit_training(model)
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
)
peft_model = get_peft_model(model, lora_config)
peft_model.print_trainable_parameters()
# Cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return peft_model
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
def train_model(progress=gr.Progress()):
# Create directories
os.makedirs(OUTPUT_TRAINING_DIR, exist_ok=True)
os.makedirs(LOGGING_DIR, exist_ok=True)
progress(0, desc="Loading model...")
model_to_train = load_model()
if model_to_train is None:
return "Failed to load model."
progress(0.2, desc="Loading dataset...")
train_dataset = load_dataset()
if train_dataset is None:
return "Failed to load dataset."
progress(0.4, desc="Setting up trainer...")
# Calculate steps and warmup
total_train_batch_size = BATCH_SIZE_PER_DEVICE * GRAD_ACCUMULATION_STEPS
num_training_steps = math.ceil((len(train_dataset) * NUM_EPOCHS) / total_train_batch_size)
num_warmup_steps = int(num_training_steps * WARMUP_RATIO)
# Logging frequency
steps_per_epoch = math.ceil(len(train_dataset) / total_train_batch_size)
LOGGING_STEPS = max(10, steps_per_epoch // 15)
SAVE_STEPS = max(50, steps_per_epoch // 10)
training_args = TrainingArguments(
output_dir=OUTPUT_TRAINING_DIR,
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE_PER_DEVICE,
gradient_accumulation_steps=GRAD_ACCUMULATION_STEPS,
optim=OPTIMIZER,
logging_dir=LOGGING_DIR,
logging_strategy="steps",
logging_steps=LOGGING_STEPS,
save_strategy="steps",
save_steps=SAVE_STEPS,
save_total_limit=2,
learning_rate=LEARNING_RATE,
weight_decay=WEIGHT_DECAY,
warmup_steps=num_warmup_steps,
lr_scheduler_type=LR_SCHEDULER,
report_to="tensorboard",
fp16=False,
bf16=True if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else False,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
)
trainer = Trainer(
model=model_to_train,
args=training_args,
train_dataset=train_dataset,
data_collator=seq2seq_causal_collator,
)
progress(0.5, desc="Starting training...")
# Clear cache before starting
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
train_result = trainer.train()
progress(0.9, desc="Saving model...")
# Save final model and training state
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
trainer.save_model(final_save_path)
trainer.save_state()
# Log metrics
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
progress(1.0, desc="Training complete!")
return f"Training completed successfully. Model saved to {final_save_path}"
except Exception as e:
return f"An error occurred during training: {str(e)}"
# Create Gradio interface
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# Fine-tune LLaMA 3 8B with QLoRA")
with gr.Tab("Training"):
train_button = gr.Button("Start Fine-tuning")
result_text = gr.Textbox(label="Training Results", interactive=False)
train_button.click(train_model, outputs=result_text)
with gr.Tab("About"):
gr.Markdown("""
## Information
This is a Hugging Face Space version of the original Google Colab notebook.
It fine-tunes a quantized LLaMA 3 8B model using QLoRA on podcast dialogue data.
### Model
- Base Model: {YOUR_HF_USERNAME}/{MODEL_REPO_NAME}
- Using 4-bit quantization with LoRA adapters
### Dataset
- Custom dataset: {YOUR_HF_USERNAME}/{DATASET_REPO_NAME}
- Contains podcast dialogue pairs processed for training
### Training Setup
- QLoRA fine-tuning
- Epochs: {NUM_EPOCHS}
- Batch size: {BATCH_SIZE_PER_DEVICE} with {GRAD_ACCUMULATION_STEPS} gradient accumulation steps
- Learning rate: {LEARNING_RATE}
""".format(
YOUR_HF_USERNAME=YOUR_HF_USERNAME,
MODEL_REPO_NAME=MODEL_REPO_NAME,
DATASET_REPO_NAME=DATASET_REPO_NAME,
NUM_EPOCHS=NUM_EPOCHS,
BATCH_SIZE_PER_DEVICE=BATCH_SIZE_PER_DEVICE,
GRAD_ACCUMULATION_STEPS=GRAD_ACCUMULATION_STEPS,
LEARNING_RATE=LEARNING_RATE
))
return demo
# Main entry point
if __name__ == "__main__":
# Install dependencies first if needed
# !pip install -q -U transformers accelerate bitsandbytes peft torch datasets huggingface_hub gradio
# Create and launch the UI
demo = create_ui()
demo.launch() |