Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
|
12 |
# Initialize inference clients
|
13 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
14 |
|
15 |
-
def llava(inputs
|
16 |
"""Processes an image and text input using Llava."""
|
17 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
18 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
@@ -23,18 +23,21 @@ def respond(message, history):
|
|
23 |
"""Generate a response based on text or image input."""
|
24 |
if "files" in message and message["files"]:
|
25 |
# Handle image + text input
|
26 |
-
inputs = llava(message
|
27 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
28 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
29 |
thread.start()
|
|
|
30 |
buffer = ""
|
31 |
for new_text in streamer:
|
32 |
buffer += new_text
|
33 |
-
|
|
|
|
|
34 |
else:
|
35 |
# Handle text-only input
|
36 |
user_message = message["text"]
|
37 |
-
history.append([user_message, None]) #
|
38 |
|
39 |
# Prepare prompt for the language model
|
40 |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
@@ -42,8 +45,8 @@ def respond(message, history):
|
|
42 |
|
43 |
# Extract response and update history
|
44 |
bot_message = response["choices"][0]["message"]["content"]
|
45 |
-
history[-1][1] = bot_message # Update the
|
46 |
-
yield history
|
47 |
|
48 |
def generate_image(prompt):
|
49 |
"""Generates an image based on the user prompt."""
|
@@ -57,20 +60,18 @@ with gr.Blocks() as demo:
|
|
57 |
with gr.Column():
|
58 |
text_input = gr.Textbox(placeholder="Enter your message...")
|
59 |
file_input = gr.File(label="Upload an image")
|
60 |
-
with gr.Column():
|
61 |
-
output = gr.Image(label="Generated Image")
|
62 |
|
63 |
def handle_text(text, history=[]):
|
64 |
"""Handle text input and generate responses."""
|
65 |
-
return respond({"text": text}, history)
|
66 |
|
67 |
def handle_file_upload(files, history=[]):
|
68 |
"""Handle file uploads and generate responses."""
|
69 |
-
return respond({"files": files, "text": "Describe this image."}, history)
|
70 |
|
71 |
# Connect components to callbacks
|
72 |
-
text_input.submit(handle_text, [text_input, chatbot], [chatbot])
|
73 |
-
file_input.change(handle_file_upload, [file_input, chatbot], [chatbot])
|
74 |
|
75 |
# Launch the Gradio app
|
76 |
demo.launch()
|
|
|
12 |
# Initialize inference clients
|
13 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
14 |
|
15 |
+
def llava(inputs):
|
16 |
"""Processes an image and text input using Llava."""
|
17 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
18 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
|
|
23 |
"""Generate a response based on text or image input."""
|
24 |
if "files" in message and message["files"]:
|
25 |
# Handle image + text input
|
26 |
+
inputs = llava(message)
|
27 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
28 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
29 |
thread.start()
|
30 |
+
|
31 |
buffer = ""
|
32 |
for new_text in streamer:
|
33 |
buffer += new_text
|
34 |
+
history[-1][1] = buffer # Update the latest message in history
|
35 |
+
yield history, history # Yield both chatbot and history for updating
|
36 |
+
|
37 |
else:
|
38 |
# Handle text-only input
|
39 |
user_message = message["text"]
|
40 |
+
history.append([user_message, None]) # Add user's message with a placeholder response
|
41 |
|
42 |
# Prepare prompt for the language model
|
43 |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
|
|
45 |
|
46 |
# Extract response and update history
|
47 |
bot_message = response["choices"][0]["message"]["content"]
|
48 |
+
history[-1][1] = bot_message # Update the latest message with bot's response
|
49 |
+
yield history, history # Yield both chatbot and history for updating
|
50 |
|
51 |
def generate_image(prompt):
|
52 |
"""Generates an image based on the user prompt."""
|
|
|
60 |
with gr.Column():
|
61 |
text_input = gr.Textbox(placeholder="Enter your message...")
|
62 |
file_input = gr.File(label="Upload an image")
|
|
|
|
|
63 |
|
64 |
def handle_text(text, history=[]):
|
65 |
"""Handle text input and generate responses."""
|
66 |
+
return respond({"text": text}, history)
|
67 |
|
68 |
def handle_file_upload(files, history=[]):
|
69 |
"""Handle file uploads and generate responses."""
|
70 |
+
return respond({"files": files, "text": "Describe this image."}, history)
|
71 |
|
72 |
# Connect components to callbacks
|
73 |
+
text_input.submit(handle_text, [text_input, chatbot], [chatbot, chatbot])
|
74 |
+
file_input.change(handle_file_upload, [file_input, chatbot], [chatbot, chatbot])
|
75 |
|
76 |
# Launch the Gradio app
|
77 |
demo.launch()
|