Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,19 +9,20 @@ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
|
9 |
processor = LlavaProcessor.from_pretrained(model_id)
|
10 |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
11 |
|
|
|
12 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
13 |
|
14 |
-
# Functions for chat and image handling
|
15 |
def llava(inputs, history):
|
16 |
-
"""Processes image
|
17 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
18 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
19 |
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
20 |
return processed
|
21 |
|
22 |
def respond(message, history):
|
23 |
-
"""Generate a response
|
24 |
if "files" in message and message["files"]:
|
|
|
25 |
inputs = llava(message, history)
|
26 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
27 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
@@ -31,53 +32,45 @@ def respond(message, history):
|
|
31 |
buffer += new_text
|
32 |
yield buffer
|
33 |
else:
|
|
|
34 |
user_message = message["text"]
|
35 |
-
history.append([user_message, None])
|
|
|
|
|
36 |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
37 |
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
|
|
|
|
38 |
bot_message = response["choices"][0]["message"]["content"]
|
39 |
-
history[-1][1] = bot_message
|
40 |
yield history
|
41 |
|
42 |
def generate_image(prompt):
|
43 |
-
"""Generates an image."""
|
44 |
client = InferenceClient("KingNish/Image-Gen-Pro")
|
45 |
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
return {"chat_visible": page == "chat", "image_visible": page == "image"}
|
51 |
-
|
52 |
-
# Gradio app setup
|
53 |
-
with gr.Blocks(title="AI Chat & Tools") as demo:
|
54 |
-
state = gr.State({"chat_visible": True, "image_visible": False})
|
55 |
-
|
56 |
with gr.Row():
|
57 |
-
with gr.Column(
|
58 |
-
gr.
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
with gr.Column(scale=3):
|
63 |
-
with gr.Row(visible=lambda state: state["chat_visible"], interactive=True):
|
64 |
-
gr.Markdown("## Chat with AI Assistant")
|
65 |
-
chatbot = gr.Chatbot(label="Chat", show_label=False)
|
66 |
-
text_input = gr.Textbox(placeholder="Enter your message...", lines=2, show_label=False)
|
67 |
-
file_input = gr.File(label="Upload an image", file_types=["image/*"])
|
68 |
-
text_input.submit(respond, [text_input, chatbot], [chatbot])
|
69 |
-
file_input.change(respond, [file_input, chatbot], [chatbot])
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
image_output = gr.Image(label="Generated Image")
|
75 |
-
image_prompt.submit(generate_image, [image_prompt], [image_output])
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
#
|
82 |
-
|
|
|
83 |
|
|
|
|
|
|
9 |
processor = LlavaProcessor.from_pretrained(model_id)
|
10 |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
11 |
|
12 |
+
# Initialize inference clients
|
13 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
14 |
|
|
|
15 |
def llava(inputs, history):
|
16 |
+
"""Processes an image and text input using Llava."""
|
17 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
18 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
19 |
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
20 |
return processed
|
21 |
|
22 |
def respond(message, history):
|
23 |
+
"""Generate a response based on text or image input."""
|
24 |
if "files" in message and message["files"]:
|
25 |
+
# Handle image + text input
|
26 |
inputs = llava(message, history)
|
27 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
28 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
|
|
32 |
buffer += new_text
|
33 |
yield buffer
|
34 |
else:
|
35 |
+
# Handle text-only input
|
36 |
user_message = message["text"]
|
37 |
+
history.append([user_message, None]) # Append user message to history
|
38 |
+
|
39 |
+
# Prepare prompt for the language model
|
40 |
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
41 |
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
42 |
+
|
43 |
+
# Extract response and update history
|
44 |
bot_message = response["choices"][0]["message"]["content"]
|
45 |
+
history[-1][1] = bot_message # Update the last entry with bot's response
|
46 |
yield history
|
47 |
|
48 |
def generate_image(prompt):
|
49 |
+
"""Generates an image based on the user prompt."""
|
50 |
client = InferenceClient("KingNish/Image-Gen-Pro")
|
51 |
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
52 |
|
53 |
+
# Set up Gradio interface
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
chatbot = gr.Chatbot()
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
with gr.Row():
|
57 |
+
with gr.Column():
|
58 |
+
text_input = gr.Textbox(placeholder="Enter your message...")
|
59 |
+
file_input = gr.File(label="Upload an image")
|
60 |
+
with gr.Column():
|
61 |
+
output = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
def handle_text(text, history=[]):
|
64 |
+
"""Handle text input and generate responses."""
|
65 |
+
return respond({"text": text}, history), history
|
|
|
|
|
66 |
|
67 |
+
def handle_file_upload(files, history=[]):
|
68 |
+
"""Handle file uploads and generate responses."""
|
69 |
+
return respond({"files": files, "text": "Describe this image."}, history), history
|
70 |
|
71 |
+
# Connect components to callbacks
|
72 |
+
text_input.submit(handle_text, [text_input, chatbot], [chatbot])
|
73 |
+
file_input.change(handle_file_upload, [file_input, chatbot], [chatbot])
|
74 |
|
75 |
+
# Launch the Gradio app
|
76 |
+
demo.launch()
|