test-gpt-omni / app.py
TuringsSolutions's picture
Update app.py
3f88864 verified
raw
history blame
3.21 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
from threading import Thread
# Initialize model and processor
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
# Initialize inference clients
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
def llava(inputs):
"""Processes an image and text input using Llava."""
image = Image.open(inputs["files"][0]).convert("RGB")
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
processed = processor(prompt, image, return_tensors="pt").to("cpu")
return processed
def respond(message, history):
"""Generate a response based on text or image input."""
if "files" in message and message["files"]:
# Handle image + text input
inputs = llava(message)
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
history[-1][1] = buffer # Update the latest message in history
yield history, history # Yield both chatbot and history for updating
else:
# Handle text-only input
user_message = message["text"]
history.append([user_message, None]) # Add user's message with a placeholder response
# Prepare prompt for the language model
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
response = client_gemma.chat_completion(prompt, max_tokens=200)
# Extract response and update history
bot_message = response["choices"][0]["message"]["content"]
history[-1][1] = bot_message # Update the latest message with bot's response
yield history, history # Yield both chatbot and history for updating
def generate_image(prompt):
"""Generates an image based on the user prompt."""
client = InferenceClient("KingNish/Image-Gen-Pro")
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
# Set up Gradio interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column():
text_input = gr.Textbox(placeholder="Enter your message...")
file_input = gr.File(label="Upload an image")
def handle_text(text, history=[]):
"""Handle text input and generate responses."""
return respond({"text": text}, history)
def handle_file_upload(files, history=[]):
"""Handle file uploads and generate responses."""
return respond({"files": files, "text": "Describe this image."}, history)
# Connect components to callbacks
text_input.submit(handle_text, [text_input, chatbot], [chatbot, chatbot])
file_input.change(handle_file_upload, [file_input, chatbot], [chatbot, chatbot])
# Launch the Gradio app
demo.launch()