test-gpt-omni / app.py
TuringsSolutions's picture
Update app.py
2cb303a verified
raw
history blame
3.85 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
from threading import Thread
# Initialize model and processor
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
# Initialize inference client
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# Functions
def llava(inputs, history):
"""Processes image + text input using Llava."""
image = Image.open(inputs["files"][0]).convert("RGB")
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
processed = processor(prompt, image, return_tensors="pt").to("cpu")
return processed
def respond(message, history):
"""Generate a response for text or image input."""
if "files" in message and message["files"]:
# Handle image + text input
inputs = llava(message, history)
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
# Handle text input
user_message = message["text"]
history.append([user_message, None]) # Append user message to history
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
response = client_gemma.chat_completion(prompt, max_tokens=200)
bot_message = response["choices"][0]["message"]["content"]
history[-1][1] = bot_message # Update history with bot's response
yield history
def generate_image(prompt):
"""Generates an image based on user prompt."""
client = InferenceClient("KingNish/Image-Gen-Pro")
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
# Gradio app setup with multi-page and sidebar
with gr.Blocks(title="AI Chat & Tools", theme="compact") as demo:
with gr.Sidebar():
gr.Markdown("## AI Assistant Sidebar")
gr.Markdown("Navigate through features and try them out.")
gr.Button("Open Chat").click(None, [], [], _js="() => window.location.hash='#chat'")
gr.Button("Generate Image").click(None, [], [], _js="() => window.location.hash='#image'")
with gr.Page("chat", title="Chat Interface"):
chatbot = gr.Chatbot(label="Chat with AI Assistant", show_label=False)
with gr.Row():
text_input = gr.Textbox(placeholder="Enter your message...", lines=2, show_label=False)
file_input = gr.File(label="Upload an image", file_types=["image/*"])
def handle_text(text, history=[]):
"""Handle text input."""
return respond({"text": text}, history), history
def handle_file(files, history=[]):
"""Handle file upload."""
return respond({"files": files, "text": "Describe this image."}, history), history
# Connect callbacks
text_input.submit(handle_text, [text_input, chatbot], [chatbot])
file_input.change(handle_file, [file_input, chatbot], [chatbot])
with gr.Page("image", title="Generate Image"):
gr.Markdown("### Image Generator")
image_prompt = gr.Textbox(placeholder="Describe the image to generate", show_label=False)
image_output = gr.Image(label="Generated Image")
def generate_image_callback(prompt):
"""Handle image generation."""
return generate_image(prompt)
image_prompt.submit(generate_image_callback, [image_prompt], [image_output])
# Launch Gradio app
demo.launch()