Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from neuralprophet import NeuralProphet, set_log_level | |
import warnings | |
set_log_level("ERROR") | |
warnings.filterwarnings("ignore", category=UserWarning) | |
url = "VN Index Historical Data.csv" | |
df = pd.read_csv(url) | |
df = df[["Date", "Price"]] | |
df = df.rename(columns={"Date": "ds", "Price": "y"}) | |
df.fillna(method='ffill', inplace=True) | |
df.dropna(inplace=True) | |
m = NeuralProphet( | |
n_forecasts=30, | |
n_lags=12, | |
changepoints_range=1, | |
num_hidden_layers=3, | |
daily_seasonality=False, | |
weekly_seasonality=True, | |
yearly_seasonality=True, | |
n_changepoints=150, | |
trend_reg_threshold=False, # Disable trend regularization threshold | |
d_hidden=3, | |
global_normalization=True, | |
seasonality_reg=1, | |
unknown_data_normalization=True, | |
seasonality_mode="multiplicative", | |
drop_missing=True, | |
learning_rate=0.03 | |
) | |
m.fit(df, freq='D') | |
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True) | |
forecast = m.predict(future) | |
def predict_vn_index(option=None): | |
fig1 = m.plot(forecast) | |
fig1_path = "forecast_plot1.png" | |
fig1.savefig(fig1_path) | |
# Add code to generate the second image (fig2) | |
fig2 = m.plot_latest_forecast(forecast) # Replace this line with code to generate the second image | |
fig2_path = "forecast_plot2.png" | |
fig2.savefig(fig2_path) | |
disclaimer = "Quý khách chỉ xem đây là tham khảo, công ty không chịu bất cứ trách nhiệm nào về tình trạng đầu tư của quý khách." | |
return fig1_path, fig2_path, disclaimer | |
if __name__ == "__main__": | |
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex") | |
outputs = [ | |
gr.outputs.Image(type="filepath", label="First Image"), | |
gr.outputs.Image(type="filepath", label="Second Image"), | |
gr.outputs.Textbox(label="Disclaimer") | |
] | |
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=outputs, title="Dự báo VN Index 30 ngày tới") | |
interface.launch() | |