File size: 14,078 Bytes
9f620cb
 
 
e0001dd
fd78838
9f620cb
 
 
 
 
 
 
 
3cf7a11
 
 
 
08bb753
3cf7a11
 
 
e1f3e45
 
9f620cb
3cf7a11
9f620cb
 
 
3cf7a11
 
9f620cb
 
 
3cf7a11
 
 
 
 
 
9f620cb
 
 
3cf7a11
 
9f620cb
 
3cf7a11
 
 
 
 
08bb753
3cf7a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f620cb
3cf7a11
9f620cb
 
3cf7a11
 
 
 
9f620cb
3cf7a11
 
 
 
 
 
9f620cb
 
3cf7a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f620cb
 
3dad413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf7a11
 
 
 
 
9f620cb
3cf7a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f620cb
089275b
 
 
 
946f51b
9f620cb
 
 
3cf7a11
9f620cb
3cf7a11
 
 
 
 
9f620cb
3cf7a11
 
9f620cb
 
 
 
3cf7a11
 
 
 
 
 
 
 
 
9f620cb
3cf7a11
9f620cb
 
c323aff
 
 
 
 
 
 
7804112
 
fd78838
 
 
 
 
 
 
cdbc647
fd78838
 
 
0af70a9
e0001dd
fd78838
bc6bf26
c323aff
 
fd78838
3cf7a11
4922cfb
9f620cb
3cf7a11
 
9f620cb
c323aff
 
 
 
 
e0001dd
c323aff
 
02a7a75
 
52b50a9
 
 
df0e374
c323aff
be356a8
 
e1f3e45
be356a8
 
 
 
 
 
fc9d154
 
 
be356a8
2a881cf
b66908e
be356a8
fc9d154
 
be356a8
 
fc9d154
 
be356a8
 
 
 
 
 
 
 
 
 
fc9d154
 
 
be356a8
 
 
 
 
fc9d154
 
be356a8
 
 
 
 
 
 
 
 
 
 
fc9d154
 
be356a8
 
fc9d154
 
be356a8
 
 
 
 
 
 
 
 
fc9d154
 
be356a8
 
 
 
 
 
fc9d154
 
be356a8
 
 
 
 
fc9d154
 
be356a8
 
 
fc9d154
 
be356a8
 
fc9d154
 
 
85baf0a
be356a8
cd51cb3
 
85baf0a
cd51cb3
be356a8
08bb753
 
 
 
 
 
 
 
 
 
0bf9c17
08bb753
 
85baf0a
08bb753
be356a8
63e3c09
be356a8
 
 
 
 
 
 
 
cd51cb3
 
 
 
 
08bb753
 
0bf9c17
08bb753
 
 
cd51cb3
 
 
be356a8
 
 
0166a8d
be356a8
 
8855231
be356a8
 
 
 
8855231
 
 
be356a8
 
8855231
be356a8
 
8855231
be356a8
 
 
 
cd155d1
be356a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import gradio as gr
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
from langchain_deepseek import ChatDeepSeek
from langchain_google_genai import ChatGoogleGenerativeAI
import os
from pathlib import Path
import json
import faiss
import numpy as np
from langchain.schema import Document
import pickle
import re
import requests
from functools import lru_cache
import torch
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
import threading
from queue import Queue
import concurrent.futures
from typing import Generator, Tuple
import time

class OptimizedRAGLoader:
    def __init__(self,
                 docs_folder: str = "./docs",
                 splits_folder: str = "./splits",
                 index_folder: str = "./index"):
        
        self.docs_folder = Path(docs_folder)
        self.splits_folder = Path(splits_folder)
        self.index_folder = Path(index_folder)
        
        # Create folders if they don't exist
        for folder in [self.splits_folder, self.index_folder]:
            folder.mkdir(parents=True, exist_ok=True)
            
        # File paths
        self.splits_path = self.splits_folder / "splits.json"
        self.index_path = self.index_folder / "faiss.index"
        self.documents_path = self.index_folder / "documents.pkl"
        
        # Initialize components
        self.index = None
        self.indexed_documents = None
        
        # Initialize encoder model
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.encoder = SentenceTransformer("intfloat/multilingual-e5-large")
        self.encoder.to(self.device)
        self.reranker = model = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1",trust_remote_code=True)
        
        # Initialize thread pool
        self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
        
        # Initialize response cache
        self.response_cache = {}
        
    @lru_cache(maxsize=1000)
    def encode(self, text: str):
        """Cached encoding function"""
        with torch.no_grad():
            embeddings = self.encoder.encode(
                text,
                convert_to_numpy=True,
                normalize_embeddings=True
            )
        return embeddings
    
    def batch_encode(self, texts: list):
        """Batch encoding for multiple texts"""
        with torch.no_grad():
            embeddings = self.encoder.encode(
                texts,
                batch_size=32,
                convert_to_numpy=True,
                normalize_embeddings=True,
                show_progress_bar=False
            )
        return embeddings

    def load_and_split_texts(self):
        if self._splits_exist():
            return self._load_existing_splits()
            
        documents = []
        futures = []
        
        for file_path in self.docs_folder.glob("*.txt"):
            future = self.executor.submit(self._process_file, file_path)
            futures.append(future)
            
        for future in concurrent.futures.as_completed(futures):
            documents.extend(future.result())
            
        self._save_splits(documents)
        return documents
    
    def _process_file(self, file_path):
        with open(file_path, 'r', encoding='utf-8') as file:
            text = file.read()
            chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
            
            return [
                Document(
                    page_content=chunk,
                    metadata={
                        'source': file_path.name,
                        'chunk_id': i,
                        'total_chunks': len(chunks)
                    }
                )
                for i, chunk in enumerate(chunks)
            ]

    def load_index(self) -> bool:
        """
        Charge l'index FAISS et les documents associés s'ils existent

        Returns:
            bool: True si l'index a été chargé, False sinon
        """
        if not self._index_exists():
            print("Aucun index trouvé.")
            return False

        print("Chargement de l'index existant...")
        try:
            # Charger l'index FAISS
            self.index = faiss.read_index(str(self.index_path))

            # Charger les documents associés
            with open(self.documents_path, 'rb') as f:
                self.indexed_documents = pickle.load(f)

            print(f"Index chargé avec {self.index.ntotal} vecteurs")
            return True

        except Exception as e:
            print(f"Erreur lors du chargement de l'index: {e}")
            return False

    def create_index(self, documents=None):
        if documents is None:
            documents = self.load_and_split_texts()
            
        if not documents:
            return False
            
        texts = [doc.page_content for doc in documents]
        embeddings = self.batch_encode(texts)
        
        dimension = embeddings.shape[1]
        self.index = faiss.IndexFlatL2(dimension)
        
        if torch.cuda.is_available():
            # Use GPU for FAISS if available
            res = faiss.StandardGpuResources()
            self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
            
        self.index.add(np.array(embeddings).astype('float32'))
        self.indexed_documents = documents
        
        # Save index and documents
        cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index
        faiss.write_index(cpu_index, str(self.index_path))
        
        with open(self.documents_path, 'wb') as f:
            pickle.dump(documents, f)
            
        return True

    def _index_exists(self) -> bool:
        """Vérifie si l'index et les documents associés existent"""
        return self.index_path.exists() and self.documents_path.exists()

    def get_retriever(self, k: int = 10):
        if self.index is None:
            if not self.load_index():
                if not self.create_index():
                    raise ValueError("Unable to load or create index")

        def retriever_function(query: str) -> list:
            # Check cache first
            cache_key = f"{query}_{k}"
            if cache_key in self.response_cache:
                return self.response_cache[cache_key]

            query_embedding = self.encode(query)
            
            distances, indices = self.index.search(
                np.array([query_embedding]).astype('float32'),
                k
            )
            
            results = [
                self.indexed_documents[idx]
                for idx in indices[0]
                if idx != -1
            ]
            
            # Cache the results
            self.response_cache[cache_key] = results
            return results
            
        return retriever_function

# # Initialize components
# mistral_api_key = os.getenv("mistral_api_key")
# llm = ChatMistralAI(
#     model="mistral-large-latest",
#     mistral_api_key=mistral_api_key,
#     temperature=0.01,
#     streaming=True,
# )

# deepseek_api_key = os.getenv("DEEPSEEK_KEY")
# llm = ChatDeepSeek(
#     model="deepseek-chat",
#     temperature=0,
#     api_key=deepseek_api_key,
#     streaming=True,
# )


gemini_api_key = os.getenv("GEMINI_KEY")
llm = ChatGoogleGenerativeAI(
    model="gemini-1.5-pro",
    temperature=0,
    google_api_key=gemini_api_key,
    disable_streaming=True,
)


rag_loader = OptimizedRAGLoader()
retriever = rag_loader.get_retriever(k=5)  # Reduced k for faster retrieval

# Cache for processed questions
question_cache = {}

prompt_template = ChatPromptTemplate.from_messages([
    ("system", """Vous êtes un assistant juridique expert qualifié. Analysez et répondez aux questions juridiques avec précision.
    
    PROCESSUS D'ANALYSE :
    1. Analysez le contexte fourni : {context}
    2. Utilisez la recherche web si la reponse n'existe pas dans le contexte
    3. Privilégiez les sources officielles et la jurisprudence récente

    Question à traiter : {question}
    """),
    ("human", "{question}")
])



import gradio as gr
from typing import Iterator

# Ajouter du CSS pour personnaliser l'apparence
css = """
/* Reset RTL global */
*, *::before, *::after {
    direction: rtl !important;
    text-align: right !important;
}

body {
    font-family: 'Amiri', sans-serif;  /* Utilisation de la police Arabe andalouse */
    background-color: black;  /* Fond blanc */
    color: black !important;  /* Texte noir */
    direction: rtl !important;  /* Texte en arabe aligné à droite */
}

.gradio-container {
    direction: rtl !important;  /* Alignement RTL pour toute l'interface */
}

/* Éléments de formulaire */
input[type="text"], 
.gradio-textbox input,
textarea {
    border-radius: 20px;
    padding: 10px 15px;
    border: 2px solid #000;
    font-size: 16px;
    width: 80%;
    margin: 0 auto;
    text-align: right !important;
}

/* Surcharge des styles de placeholder */
input::placeholder,
textarea::placeholder {
    text-align: right !important;
    direction: rtl !important;
}

/* Boutons */
.gradio-button {
    border-radius: 20px;
    font-size: 16px;
    background-color: #007BFF;
    color: white;
    padding: 10px 20px;
    margin: 10px auto;
    border: none;
    width: 80%;
    display: block;
}

.gradio-button:hover {
    background-color: #0056b3;
}

.gradio-chatbot .message {
    border-radius: 20px;
    padding: 10px;
    margin: 10px 0;
    background-color: #f1f1f1;
    border: 1px solid #ddd;
    width: 80%;
    text-align: right !important;
    direction: rtl !important;
}

/* Messages utilisateur alignés à gauche */
.gradio-chatbot .user-message {
    margin-right: auto;
    background-color: #e3f2fd;
    text-align: right !important;
    direction: rtl !important;
}

/* Messages assistant alignés à droite */
.gradio-chatbot .assistant-message {
    margin-right: auto;
    background-color: #f1f1f1;
    text-align: right 
}

/* Corrections RTL pour les éléments spécifiques */
.gradio-textbox textarea {
    text-align: right !important;
}

.gradio-dropdown div {
    text-align: right !important;
}
"""

def process_question(question: str) -> Iterator[str]:
    if question in question_cache:
        response, docs = question_cache[question]
        yield response + "\nSources:\n" + "\n".join([doc.page_content for doc in docs])
        return
        
    relevant_docs = retriever(question)
    # context = "\n".join([doc.page_content for doc in relevant_docs])


    context = [doc.page_content for doc in relevant_docs]
    text_pairs = [[question, text] for text in context]
    scores = rag_loader.reranker.predict(text_pairs)
    
    scored_docs = list(zip(scores, context, relevant_docs))
    # scored_docs.sort(reverse=True)
    scored_docs.sort(key=lambda x: x[0], reverse=True)
    reranked_docs = [d[2].page_content for d in scored_docs][:10]

    
    prompt = prompt_template.format_messages(
        context=reranked_docs,
        question=question
    )
    full_response = ""
    try:
        for chunk in llm.stream(prompt):
            if isinstance(chunk, str):
                current_chunk = chunk
            else:
                current_chunk = chunk.content
            full_response += current_chunk
            # sources = "\n".join(set([doc.metadata.get("source") for doc in relevant_docs]))
            # sources = [os.path.splitext(source[1])[0] for source in sources] 
            # yield full_response + "\n\n\nالمصادر المحتملة :\n" + "".join(sources)
            sources = [doc.metadata.get("source") for doc in relevant_docs]
            sources = list(set([os.path.splitext(source)[0] for source in sources]))


            sources = [d[2].metadata['source'] for d in scored_docs][:10]
            sources = list(set([os.path.splitext(source)[0] for source in sources]))

            
            yield full_response + "\n\n\nالمصادر المحتملة :\n" + "\n".join(sources)
            # yield full_response + "\n\n\nالمصادر المحتملة:\n" + "\n".join([doc.metadata.get("source") for doc in relevant_docs])
        question_cache[question] = (full_response, relevant_docs)
    except Exception as e:
        yield f"Erreur lors du traitement : {str(e)}"


def gradio_stream(question: str, chat_history: list) -> Iterator[list]:
    """
    Format the output for Gradio Chatbot component with streaming.
    """
    full_response = ""
    try:
        for partial_response in process_question(question):
            full_response = partial_response
            # Append the latest assistant response to chat history
            updated_chat = chat_history + [[question, partial_response]]
            yield updated_chat
    except Exception as e:
        # Handle errors during streaming
        updated_chat = chat_history + [[question, f"Erreur : {str(e)}"]]
        yield updated_chat


# Gradio interface
with gr.Blocks(css=css) as demo:

    gr.Markdown("<h2 style='text-align: center !important;'>هذا تطبيق للاجابة على الأسئلة المتعلقة بالقوانين المغربية</h2>")

    # Organisation en 3 lignes
    with gr.Row():  # Première ligne: Question
        message = gr.Textbox(label="أدخل سؤالك", placeholder="اكتب سؤالك هنا", elem_id="question_input")
        
    with gr.Row():  # Deuxième ligne: Bouton de recherche
        send = gr.Button("بحث", elem_id="search_button")

    with gr.Row():  # Troisième ligne: Affichage de la réponse
        chatbot = gr.Chatbot(label="")

    # Fonction de mise à jour pour l'utilisateur
    def user_input(user_message, chat_history):
        return "", chat_history + [[user_message, None]]

    send.click(user_input, [message, chatbot], [message, chatbot], queue=False)
    send.click(gradio_stream, [message, chatbot], chatbot)

demo.launch(share=True)