File size: 14,078 Bytes
9f620cb e0001dd fd78838 9f620cb 3cf7a11 08bb753 3cf7a11 e1f3e45 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 08bb753 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3dad413 3cf7a11 9f620cb 3cf7a11 9f620cb 089275b 946f51b 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb c323aff 7804112 fd78838 cdbc647 fd78838 0af70a9 e0001dd fd78838 bc6bf26 c323aff fd78838 3cf7a11 4922cfb 9f620cb 3cf7a11 9f620cb c323aff e0001dd c323aff 02a7a75 52b50a9 df0e374 c323aff be356a8 e1f3e45 be356a8 fc9d154 be356a8 2a881cf b66908e be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 be356a8 fc9d154 85baf0a be356a8 cd51cb3 85baf0a cd51cb3 be356a8 08bb753 0bf9c17 08bb753 85baf0a 08bb753 be356a8 63e3c09 be356a8 cd51cb3 08bb753 0bf9c17 08bb753 cd51cb3 be356a8 0166a8d be356a8 8855231 be356a8 8855231 be356a8 8855231 be356a8 8855231 be356a8 cd155d1 be356a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import gradio as gr
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
from langchain_deepseek import ChatDeepSeek
from langchain_google_genai import ChatGoogleGenerativeAI
import os
from pathlib import Path
import json
import faiss
import numpy as np
from langchain.schema import Document
import pickle
import re
import requests
from functools import lru_cache
import torch
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
import threading
from queue import Queue
import concurrent.futures
from typing import Generator, Tuple
import time
class OptimizedRAGLoader:
def __init__(self,
docs_folder: str = "./docs",
splits_folder: str = "./splits",
index_folder: str = "./index"):
self.docs_folder = Path(docs_folder)
self.splits_folder = Path(splits_folder)
self.index_folder = Path(index_folder)
# Create folders if they don't exist
for folder in [self.splits_folder, self.index_folder]:
folder.mkdir(parents=True, exist_ok=True)
# File paths
self.splits_path = self.splits_folder / "splits.json"
self.index_path = self.index_folder / "faiss.index"
self.documents_path = self.index_folder / "documents.pkl"
# Initialize components
self.index = None
self.indexed_documents = None
# Initialize encoder model
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.encoder = SentenceTransformer("intfloat/multilingual-e5-large")
self.encoder.to(self.device)
self.reranker = model = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1",trust_remote_code=True)
# Initialize thread pool
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
# Initialize response cache
self.response_cache = {}
@lru_cache(maxsize=1000)
def encode(self, text: str):
"""Cached encoding function"""
with torch.no_grad():
embeddings = self.encoder.encode(
text,
convert_to_numpy=True,
normalize_embeddings=True
)
return embeddings
def batch_encode(self, texts: list):
"""Batch encoding for multiple texts"""
with torch.no_grad():
embeddings = self.encoder.encode(
texts,
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False
)
return embeddings
def load_and_split_texts(self):
if self._splits_exist():
return self._load_existing_splits()
documents = []
futures = []
for file_path in self.docs_folder.glob("*.txt"):
future = self.executor.submit(self._process_file, file_path)
futures.append(future)
for future in concurrent.futures.as_completed(futures):
documents.extend(future.result())
self._save_splits(documents)
return documents
def _process_file(self, file_path):
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
return [
Document(
page_content=chunk,
metadata={
'source': file_path.name,
'chunk_id': i,
'total_chunks': len(chunks)
}
)
for i, chunk in enumerate(chunks)
]
def load_index(self) -> bool:
"""
Charge l'index FAISS et les documents associés s'ils existent
Returns:
bool: True si l'index a été chargé, False sinon
"""
if not self._index_exists():
print("Aucun index trouvé.")
return False
print("Chargement de l'index existant...")
try:
# Charger l'index FAISS
self.index = faiss.read_index(str(self.index_path))
# Charger les documents associés
with open(self.documents_path, 'rb') as f:
self.indexed_documents = pickle.load(f)
print(f"Index chargé avec {self.index.ntotal} vecteurs")
return True
except Exception as e:
print(f"Erreur lors du chargement de l'index: {e}")
return False
def create_index(self, documents=None):
if documents is None:
documents = self.load_and_split_texts()
if not documents:
return False
texts = [doc.page_content for doc in documents]
embeddings = self.batch_encode(texts)
dimension = embeddings.shape[1]
self.index = faiss.IndexFlatL2(dimension)
if torch.cuda.is_available():
# Use GPU for FAISS if available
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
self.index.add(np.array(embeddings).astype('float32'))
self.indexed_documents = documents
# Save index and documents
cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index
faiss.write_index(cpu_index, str(self.index_path))
with open(self.documents_path, 'wb') as f:
pickle.dump(documents, f)
return True
def _index_exists(self) -> bool:
"""Vérifie si l'index et les documents associés existent"""
return self.index_path.exists() and self.documents_path.exists()
def get_retriever(self, k: int = 10):
if self.index is None:
if not self.load_index():
if not self.create_index():
raise ValueError("Unable to load or create index")
def retriever_function(query: str) -> list:
# Check cache first
cache_key = f"{query}_{k}"
if cache_key in self.response_cache:
return self.response_cache[cache_key]
query_embedding = self.encode(query)
distances, indices = self.index.search(
np.array([query_embedding]).astype('float32'),
k
)
results = [
self.indexed_documents[idx]
for idx in indices[0]
if idx != -1
]
# Cache the results
self.response_cache[cache_key] = results
return results
return retriever_function
# # Initialize components
# mistral_api_key = os.getenv("mistral_api_key")
# llm = ChatMistralAI(
# model="mistral-large-latest",
# mistral_api_key=mistral_api_key,
# temperature=0.01,
# streaming=True,
# )
# deepseek_api_key = os.getenv("DEEPSEEK_KEY")
# llm = ChatDeepSeek(
# model="deepseek-chat",
# temperature=0,
# api_key=deepseek_api_key,
# streaming=True,
# )
gemini_api_key = os.getenv("GEMINI_KEY")
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0,
google_api_key=gemini_api_key,
disable_streaming=True,
)
rag_loader = OptimizedRAGLoader()
retriever = rag_loader.get_retriever(k=5) # Reduced k for faster retrieval
# Cache for processed questions
question_cache = {}
prompt_template = ChatPromptTemplate.from_messages([
("system", """Vous êtes un assistant juridique expert qualifié. Analysez et répondez aux questions juridiques avec précision.
PROCESSUS D'ANALYSE :
1. Analysez le contexte fourni : {context}
2. Utilisez la recherche web si la reponse n'existe pas dans le contexte
3. Privilégiez les sources officielles et la jurisprudence récente
Question à traiter : {question}
"""),
("human", "{question}")
])
import gradio as gr
from typing import Iterator
# Ajouter du CSS pour personnaliser l'apparence
css = """
/* Reset RTL global */
*, *::before, *::after {
direction: rtl !important;
text-align: right !important;
}
body {
font-family: 'Amiri', sans-serif; /* Utilisation de la police Arabe andalouse */
background-color: black; /* Fond blanc */
color: black !important; /* Texte noir */
direction: rtl !important; /* Texte en arabe aligné à droite */
}
.gradio-container {
direction: rtl !important; /* Alignement RTL pour toute l'interface */
}
/* Éléments de formulaire */
input[type="text"],
.gradio-textbox input,
textarea {
border-radius: 20px;
padding: 10px 15px;
border: 2px solid #000;
font-size: 16px;
width: 80%;
margin: 0 auto;
text-align: right !important;
}
/* Surcharge des styles de placeholder */
input::placeholder,
textarea::placeholder {
text-align: right !important;
direction: rtl !important;
}
/* Boutons */
.gradio-button {
border-radius: 20px;
font-size: 16px;
background-color: #007BFF;
color: white;
padding: 10px 20px;
margin: 10px auto;
border: none;
width: 80%;
display: block;
}
.gradio-button:hover {
background-color: #0056b3;
}
.gradio-chatbot .message {
border-radius: 20px;
padding: 10px;
margin: 10px 0;
background-color: #f1f1f1;
border: 1px solid #ddd;
width: 80%;
text-align: right !important;
direction: rtl !important;
}
/* Messages utilisateur alignés à gauche */
.gradio-chatbot .user-message {
margin-right: auto;
background-color: #e3f2fd;
text-align: right !important;
direction: rtl !important;
}
/* Messages assistant alignés à droite */
.gradio-chatbot .assistant-message {
margin-right: auto;
background-color: #f1f1f1;
text-align: right
}
/* Corrections RTL pour les éléments spécifiques */
.gradio-textbox textarea {
text-align: right !important;
}
.gradio-dropdown div {
text-align: right !important;
}
"""
def process_question(question: str) -> Iterator[str]:
if question in question_cache:
response, docs = question_cache[question]
yield response + "\nSources:\n" + "\n".join([doc.page_content for doc in docs])
return
relevant_docs = retriever(question)
# context = "\n".join([doc.page_content for doc in relevant_docs])
context = [doc.page_content for doc in relevant_docs]
text_pairs = [[question, text] for text in context]
scores = rag_loader.reranker.predict(text_pairs)
scored_docs = list(zip(scores, context, relevant_docs))
# scored_docs.sort(reverse=True)
scored_docs.sort(key=lambda x: x[0], reverse=True)
reranked_docs = [d[2].page_content for d in scored_docs][:10]
prompt = prompt_template.format_messages(
context=reranked_docs,
question=question
)
full_response = ""
try:
for chunk in llm.stream(prompt):
if isinstance(chunk, str):
current_chunk = chunk
else:
current_chunk = chunk.content
full_response += current_chunk
# sources = "\n".join(set([doc.metadata.get("source") for doc in relevant_docs]))
# sources = [os.path.splitext(source[1])[0] for source in sources]
# yield full_response + "\n\n\nالمصادر المحتملة :\n" + "".join(sources)
sources = [doc.metadata.get("source") for doc in relevant_docs]
sources = list(set([os.path.splitext(source)[0] for source in sources]))
sources = [d[2].metadata['source'] for d in scored_docs][:10]
sources = list(set([os.path.splitext(source)[0] for source in sources]))
yield full_response + "\n\n\nالمصادر المحتملة :\n" + "\n".join(sources)
# yield full_response + "\n\n\nالمصادر المحتملة:\n" + "\n".join([doc.metadata.get("source") for doc in relevant_docs])
question_cache[question] = (full_response, relevant_docs)
except Exception as e:
yield f"Erreur lors du traitement : {str(e)}"
def gradio_stream(question: str, chat_history: list) -> Iterator[list]:
"""
Format the output for Gradio Chatbot component with streaming.
"""
full_response = ""
try:
for partial_response in process_question(question):
full_response = partial_response
# Append the latest assistant response to chat history
updated_chat = chat_history + [[question, partial_response]]
yield updated_chat
except Exception as e:
# Handle errors during streaming
updated_chat = chat_history + [[question, f"Erreur : {str(e)}"]]
yield updated_chat
# Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("<h2 style='text-align: center !important;'>هذا تطبيق للاجابة على الأسئلة المتعلقة بالقوانين المغربية</h2>")
# Organisation en 3 lignes
with gr.Row(): # Première ligne: Question
message = gr.Textbox(label="أدخل سؤالك", placeholder="اكتب سؤالك هنا", elem_id="question_input")
with gr.Row(): # Deuxième ligne: Bouton de recherche
send = gr.Button("بحث", elem_id="search_button")
with gr.Row(): # Troisième ligne: Affichage de la réponse
chatbot = gr.Chatbot(label="")
# Fonction de mise à jour pour l'utilisateur
def user_input(user_message, chat_history):
return "", chat_history + [[user_message, None]]
send.click(user_input, [message, chatbot], [message, chatbot], queue=False)
send.click(gradio_stream, [message, chatbot], chatbot)
demo.launch(share=True)
|