Trabis commited on
Commit
7804112
·
verified ·
1 Parent(s): 8793554

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -204,24 +204,24 @@ class OptimizedRAGLoader:
204
 
205
  return retriever_function
206
 
207
- # Initialize components
208
- # mistral_api_key = os.getenv("mistral_api_key")
209
- # llm = ChatMistralAI(
210
- # model="mistral-large-latest",
211
- # mistral_api_key=mistral_api_key,
212
- # temperature=0.01,
213
- # streaming=True,
214
- # )
215
-
216
- from langchain_openai import ChatOpenAI
217
- llm = ChatOpenAI(
218
- api_key="sk-bahOSQLfPZb62d-q3aZ0JGcN8raIl12mhUj38DkdpeT3BlbkFJ650KTnBNL0rsIvUcdBA1KJw8H7dCCy7-Kl02GO-l4A",
219
- model_name="GPT-4 Turbo",
220
- temperature=0.1,
221
  )
222
 
 
 
 
 
 
 
 
223
  rag_loader = OptimizedRAGLoader()
224
- retriever = rag_loader.get_retriever(k=30) # Reduced k for faster retrieval
225
 
226
  # Cache for processed questions
227
  question_cache = {}
@@ -354,7 +354,7 @@ def process_question(question: str) -> Iterator[str]:
354
  scored_docs = list(zip(scores, context, relevant_docs))
355
  # scored_docs.sort(reverse=True)
356
  scored_docs.sort(key=lambda x: x[0], reverse=True)
357
- reranked_docs = [d[2].page_content for d in scored_docs][:15]
358
 
359
 
360
  prompt = prompt_template.format_messages(
@@ -376,7 +376,7 @@ def process_question(question: str) -> Iterator[str]:
376
  sources = list(set([os.path.splitext(source)[0] for source in sources]))
377
 
378
 
379
- sources = [d[2].metadata['source'] for d in scored_docs][:15]
380
  sources = list(set([os.path.splitext(source)[0] for source in sources]))
381
 
382
 
 
204
 
205
  return retriever_function
206
 
207
+ Initialize components
208
+ mistral_api_key = os.getenv("mistral_api_key")
209
+ llm = ChatMistralAI(
210
+ model="mistral-large-latest",
211
+ mistral_api_key=mistral_api_key,
212
+ temperature=0.01,
213
+ streaming=True,
 
 
 
 
 
 
 
214
  )
215
 
216
+ # from langchain_openai import ChatOpenAI
217
+ # llm = ChatOpenAI(
218
+ # api_key="sk-bahOSQLfPZb62d-q3aZ0JGcN8raIl12mhUj38DkdpeT3BlbkFJ650KTnBNL0rsIvUcdBA1KJw8H7dCCy7-Kl02GO-l4A",
219
+ # model_name="GPT-4 Turbo",
220
+ # temperature=0.1,
221
+ # )
222
+
223
  rag_loader = OptimizedRAGLoader()
224
+ retriever = rag_loader.get_retriever(k=20) # Reduced k for faster retrieval
225
 
226
  # Cache for processed questions
227
  question_cache = {}
 
354
  scored_docs = list(zip(scores, context, relevant_docs))
355
  # scored_docs.sort(reverse=True)
356
  scored_docs.sort(key=lambda x: x[0], reverse=True)
357
+ reranked_docs = [d[2].page_content for d in scored_docs][:5]
358
 
359
 
360
  prompt = prompt_template.format_messages(
 
376
  sources = list(set([os.path.splitext(source)[0] for source in sources]))
377
 
378
 
379
+ sources = [d[2].metadata['source'] for d in scored_docs][:5]
380
  sources = list(set([os.path.splitext(source)[0] for source in sources]))
381
 
382