Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from model import TransformerModel # Replace with your model class
|
| 4 |
import gradio as gr
|
|
@@ -21,15 +22,13 @@ def load_quantized_model(checkpoint_path):
|
|
| 21 |
tie_word_embeddings=True,
|
| 22 |
)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
model.embed_tokens =
|
| 26 |
-
model.embed_tokens, {torch.nn.Embedding}, dtype=torch.qint8
|
| 27 |
-
)
|
| 28 |
|
| 29 |
# Apply static quantization to the rest of the model
|
| 30 |
-
model.qconfig =
|
| 31 |
-
model =
|
| 32 |
-
model =
|
| 33 |
|
| 34 |
# Load the quantized checkpoint
|
| 35 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
@@ -38,12 +37,19 @@ def load_quantized_model(checkpoint_path):
|
|
| 38 |
model.eval()
|
| 39 |
return model
|
| 40 |
|
| 41 |
-
|
| 42 |
import gradio as gr
|
| 43 |
|
| 44 |
# Load the quantized model
|
| 45 |
model = load_quantized_model("checkpoint_quantized.pt")
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Function to generate text
|
| 48 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
| 49 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torch.ao.quantization as quantization
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
from model import TransformerModel # Replace with your model class
|
| 5 |
import gradio as gr
|
|
|
|
| 22 |
tie_word_embeddings=True,
|
| 23 |
)
|
| 24 |
|
| 25 |
+
# Set the quantization configuration for the embedding layer
|
| 26 |
+
model.embed_tokens.qconfig = quantization.float_qparams_weight_only_qconfig
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Apply static quantization to the rest of the model
|
| 29 |
+
model.qconfig = quantization.default_qconfig
|
| 30 |
+
model = quantization.prepare(model, inplace=False)
|
| 31 |
+
model = quantization.convert(model, inplace=False)
|
| 32 |
|
| 33 |
# Load the quantized checkpoint
|
| 34 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
|
|
| 37 |
model.eval()
|
| 38 |
return model
|
| 39 |
|
|
|
|
| 40 |
import gradio as gr
|
| 41 |
|
| 42 |
# Load the quantized model
|
| 43 |
model = load_quantized_model("checkpoint_quantized.pt")
|
| 44 |
|
| 45 |
+
# Set the quantization configuration for the embedding layer
|
| 46 |
+
model.embed_tokens.qconfig = quantization.float_qparams_weight_only_qconfig
|
| 47 |
+
|
| 48 |
+
# Apply static quantization to the rest of the model
|
| 49 |
+
model.qconfig = quantization.default_qconfig
|
| 50 |
+
model = quantization.prepare(model, inplace=False)
|
| 51 |
+
model = quantization.convert(model, inplace=False)
|
| 52 |
+
|
| 53 |
# Function to generate text
|
| 54 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
| 55 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|