Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoTokenizer
|
3 |
from model import TransformerModel # Replace with your model class
|
4 |
import gradio as gr
|
@@ -21,15 +22,13 @@ def load_quantized_model(checkpoint_path):
|
|
21 |
tie_word_embeddings=True,
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
model.embed_tokens =
|
26 |
-
model.embed_tokens, {torch.nn.Embedding}, dtype=torch.qint8
|
27 |
-
)
|
28 |
|
29 |
# Apply static quantization to the rest of the model
|
30 |
-
model.qconfig =
|
31 |
-
model =
|
32 |
-
model =
|
33 |
|
34 |
# Load the quantized checkpoint
|
35 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
@@ -38,12 +37,19 @@ def load_quantized_model(checkpoint_path):
|
|
38 |
model.eval()
|
39 |
return model
|
40 |
|
41 |
-
|
42 |
import gradio as gr
|
43 |
|
44 |
# Load the quantized model
|
45 |
model = load_quantized_model("checkpoint_quantized.pt")
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Function to generate text
|
48 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
49 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
1 |
import torch
|
2 |
+
import torch.ao.quantization as quantization
|
3 |
from transformers import AutoTokenizer
|
4 |
from model import TransformerModel # Replace with your model class
|
5 |
import gradio as gr
|
|
|
22 |
tie_word_embeddings=True,
|
23 |
)
|
24 |
|
25 |
+
# Set the quantization configuration for the embedding layer
|
26 |
+
model.embed_tokens.qconfig = quantization.float_qparams_weight_only_qconfig
|
|
|
|
|
27 |
|
28 |
# Apply static quantization to the rest of the model
|
29 |
+
model.qconfig = quantization.default_qconfig
|
30 |
+
model = quantization.prepare(model, inplace=False)
|
31 |
+
model = quantization.convert(model, inplace=False)
|
32 |
|
33 |
# Load the quantized checkpoint
|
34 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
|
37 |
model.eval()
|
38 |
return model
|
39 |
|
|
|
40 |
import gradio as gr
|
41 |
|
42 |
# Load the quantized model
|
43 |
model = load_quantized_model("checkpoint_quantized.pt")
|
44 |
|
45 |
+
# Set the quantization configuration for the embedding layer
|
46 |
+
model.embed_tokens.qconfig = quantization.float_qparams_weight_only_qconfig
|
47 |
+
|
48 |
+
# Apply static quantization to the rest of the model
|
49 |
+
model.qconfig = quantization.default_qconfig
|
50 |
+
model = quantization.prepare(model, inplace=False)
|
51 |
+
model = quantization.convert(model, inplace=False)
|
52 |
+
|
53 |
# Function to generate text
|
54 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
55 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|