smol-lm2-demo / app.py
Tousifahamed's picture
Upload 2 files
b789c6c verified
raw
history blame
2.59 kB
import torch
from transformers import AutoTokenizer
from model import TransformerModel # Replace with your model class
import gradio as gr
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
def load_quantized_model(checkpoint_path):
# Define the model architecture
model = TransformerModel(
vocab_size=49152,
hidden_size=576,
num_hidden_layers=30,
num_attention_heads=9,
intermediate_size=1536,
num_key_value_heads=3,
max_position_embeddings=2048,
rms_norm_eps=1e-5,
hidden_act="silu",
tie_word_embeddings=True,
)
# Apply dynamic quantization to the embedding layer
model.embed_tokens = torch.quantization.quantize_dynamic(
model.embed_tokens, {torch.nn.Embedding}, dtype=torch.qint8
)
# Apply static quantization to the rest of the model
model.qconfig = torch.quantization.default_qconfig
model = torch.quantization.prepare(model, inplace=False)
model = torch.quantization.convert(model, inplace=False)
# Load the quantized checkpoint
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
return model
import gradio as gr
# Load the quantized model
model = load_quantized_model("checkpoint_quantized.pt")
# Function to generate text
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
do_sample=True,
)
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return generated_text
# Gradio Interface
interface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, label="Top-k Sampling"),
],
outputs=gr.Textbox(label="Generated Text"),
title="Text Generation with Quantized SMOL-LM2",
description="Generate text using a quantized version of the SMOL-LM2 model.",
)
# Launch the app
interface.launch()